PART I INDEX

Abrasion, by suspensions, 133
Adsorber system, design of, 316
Adsorbers, adsorptive capacity of, 314
Advanced Engineering Test Reactor (AETR), discussion, 486
key design specifications, 487
Aqueous fuel systems, principal advantages of, 14
Armour Research Foundation Research Reactor, 348
schematic, 347
Atoms International Reactors, 347
Austenitic stainless steels, corrosion of, out of pile by uranyl carbonate, 213
homogeneous reactor metallurgy of, 262
slurry corrosion rates, discussion, 249
Autoclaves, in pile, sketch of, 204
irradiation corrosion tests on Zircaloy-2, discussion of, 237
Autoignition (pyrophoricity), of titanium, 276
of zirconium, 276
Barium sulfate, temperature dependence of solubility, 305
Bingham plastics, fluid flow of, mathematical relationship for circular pipes, 168
heat transfer for laminar flow through tubes, discussion of, 173
sediment movement in, discussion and mathematical treatment, 170
slurries, friction factor vs Reynolds number for smooth pipes, 169
Biological hazards, homogeneous reactors, discussion, 302
Biological shield, HRE-2, 396
Blanket processing, plutonium producer, discussion of, 326
removal of Pu, alternative methods, 330
behavior in uranyl sulfate solutions under dynamic conditions, 329
chemistry of plutonium in uranyl sulfate solutions, 326
solubility of tetravalent Pu in uranyl sulfate solution at 250°C, 327
Blanket-vessel design, discussion for two-region reactors, 409
Blast shield, HRE-2, for containment of missiles, 395
Boiler feed water, treatment of, 472
Boiling Reactor Experiment (BRE), conceptual design studies for, 8
definition of, 13
discussion of, 21
homogeneous, discussion of, 22
general discussion of, 22
slurry, 23
Breeder reactors, definition of, 13
Breeding, importance of, 19
Breeding ratio (BR), as function of pressure vessel size, etc., 53
and fuel concentrations (unsteady-state), calculations relative to HRE-3 conceptual design, 59
comparison of values for one- and two-region reactors, 46
definition of for criticality calculations, spherical reactors, 31
dependence of on value of eta 233U spherical reactors, 37
effect of blanket 233U concentration on, for spherical homogeneous reactors, 47
effect of copper addition on, 55
effect of core poison fraction on, 54
effect of H_2O concentration on, 55
for cylindrical reactors of various heights, 51
homogeneous spherical reactors, 35
spherical homogeneous reactors, two-region, effect of core
thorium concentration and wall power density on, 45
results of calculations for, 45
Bubble problem, homogeneous reactors, 7
Burner reactors, definition of, 13
homogeneous, discussion of, 17
Capital costs, as a function of power level, 550
bases for calculations, 521
breakdown for large scale reactors, 546
HRE-1, 357
HRE-2, 398
large-scale aqueous plutonium-power producers, 494
large-scale plants, 545
Nuclear Power Group Two-Region Breeder, 499
one-region power producers, 495
turbogenerator plants, 548
Wolverine Reactor, 476
Carbon adsorption beds, HRE-2, 366
Carbon beds, HRE-1, 353
Carbon steel, homogeneous reactor metallurgy of, 262
physical metallurgical properties, effect of neutron irradiation, 279
effect of neutron irradiation on yield and tensile strengths, 280
selection for service under irradiation, 282
slurry corrosion rates of, discussion, 249
slurry corrosion resistance of, effect of hydrogen atmosphere, 259
see also Pressure vessel steels
Catalytic recombination of radiolytic gases, effect of variables (firing time, etc.) on, in thorium oxide slurries, 186
thorium oxide, molybdenum oxide experiments, 186
Centrifugal pump—HRE-2 mock-up, 380
Charcoal adsorbers, purpose in homogeneous reactors, 440
Chemical conversion, costs for, 518
Chemical processing, blanket material of two-region breeder, conceptual flow diagram, 302
blanket removal of Np, solubility of Np in uranyl sulfate solutions, 327
blanket removal of Pu, alternative methods, 330
behavior in uranyl sulfate solutions under dynamic conditions, 329
chemistry of Pu in uranyl sulfate solutions, 326
solubility of tetravalent Pu in uranyl sulfate solution at 250°C, 327
costs for, 517
disposal of gaseous fission products, 312
adsorption of Kr on several adsorbents, 313
capacity of several adsorbents, 314
design of adsorber system, 316
discussion of HRE-2 adsorber system, 316
homogeneous fuels, discussion of neutron poisons, 301
plutonium-producer, conceptual flow diagram, 303
removal of iodine, discussion of chemistry of iodine, 319
discussion in terms of HRE-2, 324
oxidation state at high temperature and pressure, 322
oxidation state at low temperature, 323
proposed system for HRE-3, 325
vapor-liquid distribution, 320
volatility under reactor conditions, 320
removal of solids, 304
removal of solubles, by solvent extraction, 368
by uranyl peroxide precipitation, 318
by uranyl peroxide precipitation, schematic flow diagram, 319
discussion, 317
thorium oxide blanket, adaptability of the flowsheet, 335
alternative processes for, 335
average decontamination factors of the Thorex pilot plant, 334
discussion, 332
feed preparation flowsheet, 331
solvent extraction codecontamination flowsheet, 331
solvent extraction step, 333
uranium isolation and third cycle flowsheet, 332
two-region breeder, conceptual flow diagram, 302
Chloride ion, effect of concentration on stress-corrosion cracking of type-347 stainless steel, 284
effect on stress-corrosion in fuel solutions, 284
effect on stress-corrosion in fuel solutions, discussion of 100-gpm dynamic loop experiments, 287
Circulating pumps, discussion, 413
HRE-1, discussion, 350
HRE-2 blanket, discussion, 413
hydraulic parts for wear resistance, 416
large scale, 498
discussion in terms of remote maintenance, 468
PAR reactor, maintenance of, 490
Westinghouse 400A for HRE-2 fuel, 415
for slurries, discussion of wear, 416
Cold traps, purpose in homogeneous reactors, 439
Condenser, purpose in aqueous low-pressure systems, 439
Containment, cost of, in HRE-2, 398
discussion of the containment vessel, 471
methods, HRE-2, 391
Wolverine Reactor Design, 478
NPG and B & W Breeder, 501
NPG breeder reactor, 499
Control panel, HRE-2, 384
Converter reactors, definition of, 13
Core- and blanket-vessel design, conceptual, 409
Core and pressure vessel, HRE-2, discussion, 412
illustrated, 412
Core pressure rise, homogeneous reactors, safety of,
calculation for, 74
Core processing, disposal of gaseous fission products, 312
adsorption of Kr on several adsorbents, 313
removal of iodine, discussion, 323
discussion in terms of HRE-2, 324
discussion of chemistry of iodine, 319
oxidation state at high temperature and pressure, 322
oxidation state at low temperature, 323
proposed system for HRE-3, 325
vapor-liquid distribution of, 320
volatility under reactor conditions, 320
removal of solids, 304
dimensions of three sizes of hydroclones, 311
discussion of HRE-2 processing plant, 309
drawing of HRE-2 chemical plant hydroclone container, 311
factors influencing design of hydroclones, 306
schematic diagram of hydroclone, 307
solubilities of selected fission- and corrosion products, general discussion, 305
solubility of lanthanum sulfate, 304
solubility of neodymium sulfate as affected by uranyl sulfate concentration, 305
solubility of rare earth sulfates at 280°C, 305
temperature dependence of solubility of barium sulfate in core solutions, 305
temperature dependence of solubility of strontium sulfate in core solutions, 305
use of hydroclones, 306
removal of solubles, by solvent extraction, 318
discussion, 317
schematic flow diagram for uranyl peroxide method, 319
uranyl peroxide precipitation, 318
Core-vessel design, discussion for two-region reactors, 409
HRE-1, dimension and material of construction, 350
hydrodynamics, discussion for two-region reactors, 402
Corrosion products, chemistry of, 304
neutron poisoning by, 302
Cost calculations, bases for, 516
Cost studies, capital costs, for a 3-reactor station operating at 1350 thermal mw (315 electrical mw), 546
for large-scale plants, 545
of a homogeneous reactor power station as a function of station size, 550
of two-region aqueous homogeneous reactors, 548
chemical conversion costs, 518
chemical processing costs for aqueous homogeneous reactors, 517
discussion of, 515
effect of design variables on fuel costs, 521
for fuel processing cycle, 521
for investment, operating, and maintenance costs, 521
fuel, comparison of fuel costs for one- and two-region reactors, 539
cost breakdown for batch-operated homogeneous reactors (no hydroclone), 536
effect of blanket thickness and thorium concentration, 524
for a two-region breeder, 524
effect of core diameter and core thorium concentration, 525
effect of core thorium concentration and diameter, 524
effect of design variables for uranium-plutonium systems, 530
effect of fuel-processing rate and charge and poisoning on fuel cost for UO3-ThO2-D2O reactors, 544
effect of Li2SO4 on the fuel cost of a plutonium-producer—power reactor, 540
effect of nuclear parameters, 527
effect of power level, 527
on fuel costs for one-region reactors, 543
effect of reactor power in one-region reactors, 529
effect of thorium concentration in one-region reactors, 528
effect of U233 concentration (blanket) or core poison fraction on fuel cost, 523
effect of uranium concentration and reactor diameter, 532
effect of xenon poison, 528
effect of xenon removal, 527
equilibrium fuel concentrations and reactor dimensions for homogeneous reactors operating at 280°C and producing 125 mw electrical power, 551
for batch-operated homogeneous UO2SO4-Li2SO4 reactors, 534
for dual-purpose plutonium-power reactors, 537
for one-region PuO2-UO3-D2O reactors of 12-ft diameter, 531
for one-region UO2SO4-Li2SO4-D2O power reactors, 532
for two-region reactor having a 6-ft core and 10-ft diameter, 537
for two-region UO3-PuO2-D2O reactors, 535
for U235 burner reactors, 539
isotope concentrations and fuel cost-breakdown for some U235 burner reactors, 541
one-region PuO2-UO3-D2O reactors, 530
one-region spherical reactors, 527
one-region UO2SO4-D2O and UO2SO4-Li2SO4-D2O reactors, 538
one-region U-Pu reactor, 530
results for several one-region reactors near optimal conditions, 533
shape-effect comparison for cylindrical and spherical reactors, 529
shape-effect of cylindrical reactors, 529
summary of fuel costs for different reactors, 542
two-region reactor fuel cycle, 537
two-region U-Pu reactor fuel costs, 538
cycle, 537
influence of reactor variables, discussion, 523
operating and maintenance, large scale plants, 549
power, summary of estimated costs, 553
power costs, for large scale aqueous homogeneous reactors (125 electrical mw, 80% load factor, 280°C), 552
influence of power level on "present" power costs in U^{233} burners, 553
price of high-purity U^{233}, 518
Purex process, 519
relation to reactor design factors, 514
schematic flow sheet for two-region homogeneous thorium breeder reactor, 522
slurry reactors, core and blanket specifications, 524
Thorrex process, 519
turbine plant cost and net station efficiency vs steam temperature, 548
USAEC official price schedules for nuclear materials, 518
Critical concentration, cylindrical reactors, evaluation for, 49
Critical mass, homogeneous reactors, effect of thorium slurry settling on, 75
Critical velocity, definition in terms of corrosion studies, 222
Criticality calculations, aqueous-homogeneous reactors, factors in, 29
spherical, nuclear constants used in, 39
spherical, nuclear data for, 41
spherical, resonance integrals, 43
Cylindrical reactors, breeding ratios for, at various heights, 51
Cylindrical reactors, fuel costs in, 529
Decontamination, HRE-1 equipment, discussion of, 358
HRE-2 equipment, 379
Diaphragm pumps, check-valve materials, 444
collection for HRE-2 use, 442
discussion of developmental work, 443
durability of, 442
HRE-1, fuel concentration control, 353
HRE-2, for return of condensate, 364
HRE-2 mock-up, for fuel feed, 380
purpose in homogeneous reactors, 441
sketch, 441
slurry, discussion of methods under test, 444
Diffusion equations, two-group, for criticality calculations, spherical reactors, 32
Dump tank—HRE-2 mock-up, 380
Dynamic corrosion test loop, determining corrosion rates by, diagram, 201, 203
discussion, 201
discussion of equipment, 203
Eddy corrosion, a feature of slurry corrosion, discussion, 251
photo of effect on stainless steel impeller, 252
Electrical wiring and accessories, HRE-2, discussion, 460
Elgiloy, corrosion rate in uranyl sulfate solution at high temperature, 217
Entrainment separator, discussion of HRE-2 design, 436
Eta-U^{233}, value for in resonance region, homogeneous spherical reactors, 34
Evaporator, purpose in HRE-2, 435
"Fast fission factor," definition of for criticality calculations, spherical reactors, 31
Feed pumps: see Diaphragm pumps
Ferritic and martensitic stainless steels, slurry corrosion rates of, discussion, 249
Ferritic stainless steels, corrosion of, out of pile, by uranyl carbonate, 213
Fission and corrosion products, general discussion of solubilities, 305
Fission product iodine, chemistry in fuel solutions, 319
oxidation state at high temperature and pressure, 322
oxidation state at low temperature, 323
proposed removal system for HRE-3, 325
removal from aqueous homogeneous reactors, 323
removal from HRE-2, 324
vapor-liquid distribution of, 320
vitra iodine test loop, 321
volatility under reactor conditions, 320
Fission products, chemistry of, 304
gaseous, adsorptive capacity of several adsorbents, 314
design of adsorber system, 316
disposal of, 312
adsorption of Kr on several adsorbents, 313
Fissionable isotopes, production of in terms of neutron economy, 29
Fissionable material, annual requirement of, 20
Flame recombiner, HRE-1, 352
Flange closures, discussion, 429
Flange joints, bi-metallic, discussion, 431
Vickers-Anderson, discussion, 431
Flow delay tanks, purpose of, 472
Fluidized-bed reactors, discussion of, 24
Fluidized suspension reactors, definition of, 13
discussion of, 24
Freeze plugs, purpose and discussion in terms of homogeneous reactors, 451
Fuel concentrations and breeding ratios for two-region homogeneous reactors, estimation of minimum fuel costs, 44
evaluation under initial conditions, 44
initial and steady-state conditions, 43
Fuel costs, bases for calculations, 516
comparison of in various reactors, 542
cylindrical reactors, discussion, 529
effect of power level, 527
effect of xenon removal, 527
homogeneous reactors, 526
in ThO2-UO3-D2O systems, 521
one-region power reactors with Li2SO4 added, 532
one-region spherical reactors, 528
discussion, 527
effect of xenon removal, 528
two-region breeders, effect of blanket thickness, 524
effect of core diameter, 525
spherical systems, 523
U235 burner reactors, 539
Fuel inventory, HRE-2, system for, 386
Fuel processing, costs for, 519
discussion of chemistry of Pu in uranyl sulfate solutions, 326
disposal of gaseous fission products, 312
adsorption of Kr on several adsorbents, 313
adsorptive capacity of several adsorbents, 314
design of adsorber system, 316
discussion of HRE-2 adsorber system, 316
flowsheet for, 522
removal of iodine, discussion, 323
discussion of chemistry of iodine, 319
discussion in terms of HRE-2, 42
oxidation state at high temperature and pressure, 322
oxidation state at low temperature, 323
proposed system for HRE-3, 325
vapor-liquid distribution of, 320
volatility under reactor conditions, 320
removal of Np, solubility of Np in uranyl sulfate solutions, 327
removal of Pu, alternative methods, 330
behavior in uranyl sulfate solutions under dynamic conditions, 329
solubility of tetravalent Pu in uranyl sulfate solution at 250°C, 327
removal of solubles, discussion, 317
schematic flow diagram for uranyl peroxide method, 319
solvent extraction, 318
uranyl peroxide precipitation, 318
two-region breeder, conceptual flow diagram, 302
Fuel systems, aqueous, for enriched-fuel burner reactors, 17
high temperature, solution-type reactors, 17

Gamma heating, discussion, 411
Gamma ionization chamber, 460
Gamma radiation measurement, 459
Gas adsorber, disposal of gaseous fission products, adsorptive capacity of several adsorbents, 314
design of adsorber system, 316
discussion of HRE-2 gas adsorber system, 316
evaluation of adsorbents, 314
Gas handling, carbon adsorption beds for HRE-2 fission gases, 366
catalytic recombiner for HRE-2, 364
oxogen injection to prevent hydrolytic precipitation of uranium, 362
recombination of radiolytic gases in HRE-2, 362
Gas separators, discussion of HRE-2 type, 432
gas, reaction limits and pressures, discussion, 120
solubility in water and reactor solutions, 120
steam-oxygen and steam-helium, P-V-T relationships, 120
total corrosion rates in uranyl fluoride solution, 215
Heat exchanger, design data for HRE-2, 420
Heat transfer, of thorium oxide slurries, 174
Heavy water, costs of, 517
densities of liquid and vapor at elevated temperatures, 112
density of, discussion, 113
viscosity at elevated temperatures, 114
Homogeneous catalysts, thermal recombination of \(\text{H}_2 \) and \(\text{O}_2 \) in aqueous uranium solutions, discussion, 107
Homogeneous reactor development, levels of effort expended on, 9
Homogeneous reactors, biological hazards, 302
characteristics of large scale, 526
large scale, fuel costs in, 526
HRE-1 (Homogeneous Reactor Experiment No. 1), 341
beginning of construction of, 8
capital cost, 357
circulating pump, discussion of, 350
core vessel, design features, 350
critique, 358
dependence of critical concentration on temperature, 354
design, 350
discussion, 348
dismantling of, discussion, 358
equipment decontamination, discussion, 358
fuel concentration control, diaphragm pump for, 353
fuel system, 348
internal gas-recombination experiments, description, 355
leak detection device, discussion, 357
leak prevention, discussion, 356
maintenance, discussion, 357
nuclear safety, discussion, 355
off-gas system, activated carbon beds, 353
discussion of, 352
flame-recombiner, 352
power density, 350
power response during reactivity increase, 357
pressure vessel, discussion of, 350
reflector system, 350
schematic flow diagram of, 351
shielding, 350
discussion, 357
summary of results of operation, 359
HRE-2 (Homogeneous Reactor Experiment No. 2), 341
biological shield, 396
blast shield, 395
capital cost (tabulation), 398
carbon adsorption beds for fission gases, 366
catalytic recombiner, 364
chemical plant, tests of solids removal in, 312
chemical processing plant, diagram of hydroclone container, 311
dimensions of hydroclones, 308
discussion of experimental hydroclone work, 309
disposal of gaseous fission products, discussion, 316
flow diagram for, 307
photo, 310
components for, charcoal adsorbers, 440
circulating pumps, 413
cold traps, 440
condenser, 439
construction of diaphragm pump, 442
core and pressure vessel, 412
illustrated, 412
diaphragm pump check-valve materials, 444
diaphragm pumps for feed, 441
differential-pressure cells, 458
discussion of instrumentation and controls, 454
durability of diaphragm pumps, 442
effect of thermal cycling with diphenyl on steam generators, 420
electrical wiring and accessories, 460
entrainment separator, 436
drawing, 436
evaporator, 435
float transmitter for pressurizer level, 456
flow transmitters, 459
freeze plugs, 451
gas-metering valve to regulate O₂ flow to high-pressure system, 448
gas recombiner and condenser sketch, 437
gas recombiners, 436
gas separator, 432
heat-exchanger design data, 420
importance of valves, 445
letdown heat exchanger, 450
nuclear instrumentation, 459
oxygen injection equipment, 452
pressurizers, 423
reason for construction, 8
refrigeration system, 452
sampling equipment, 448
sketch of flame recombiner for off-gas after shutdown, 438
sketch of gas-metering valve, 448
sketch of letdown and low-pressure valves, 446
sketch of liquid level transmitter for pressurizer, 455
sketch of sampling equipment, 449
slurry steam generator, 423
spare steam generator, 422
steam generators, 419
steam pressurizer for the core, 425
storage tank (fuel), 434
storage tank (slurry), 435
valve actuators, 445
valve designs, 445
weigh systems for inventory purposes, 456
Westinghouse 400A pump for fuel, 415
Zircaloy-stainless steel joint, 413
conditions necessary for hydrogen-oxygen explosions, 394
containment methods, 391
control panel, 384
control room and instrument panel, photo, 385
core tank, fabrication of, inverse pole figures of Zircaloy-2 before and after refabrication, 265
discussion of welding method, 273
joint configuration of Zircaloy-2 trailer and titanium air weldments, 272
welding set-up, 272
metallurgy of, discussion of Zircaloy-2 physical metallurgy and fabrication, 263
microstructures of Zircaloy-2 plates fabricated by different schedules, 264
core vessel, fabrication of, non-destructive testing, 278
corrosion minimization, 394
critical concentration, 376
critical concentration as a function of temperature, 377
decontamination of equipment, 379
design specifications, 360, 361
diaphragm pump for return of condensate, 364
flowsheet, 363
fuel inventory systems, 386
heating and cooling rates in terms of stresses, 393
instrument and control system, 381
key control loops using pneumatic and electric transmission, 382
leak detection system, 371
leak tests, 374
maintenance concepts, 388
maximum pressure during nuclear accident, 394
oxygen injection to prevent hydrolytic precipitation of uranium, 362
radiation dosage through shield, 366
nonnuclear testing and operation, 371
nuclear-instrument thimble, 383
nuclear instrumentation, 383
nuclear operation, 375
objectives of the reactor, 359
operation of pressure-vessel mockup system, 177
operational techniques and special procedures, 376
photo of container at 50% completion, 368
piping joints for remote maintenance, 388
radiation dosages in remote maintenance work, 388
recombination of radiolytic gases, 362
remote maintenance, 387
remotely operable tools, 389
safety, in terms of hydrogen-oxygen explosions, 395
in terms of missiles, 395
samplers for fuel and blanket liquids, 366
schedule of construction, 369
shield, discussion, 366
and vapor-container, sketch, 367
slurry blanket, flowsheet, 177
operating experience with, 176
specifications and description, 359
stress cracking, 373
summary of design and construction experience, 396
summary of nonnuclear operation, 372
HRE-2 mock-up, diaphragm feed-pumps used in, 380
discussion, 380
dump tank used in, 380
letdown heat exchanger used in, 380
letdown valve used in, 380
liquid-level controller used in, 380
one-eighth-scale steam generator used in, 380
oxygen-feed system used in, 380
pulsafeeder (diaphragm pump) used in, 380
summary of experience, 381
Westinghouse canned-rotor centrifugal pump used in, 380
HRE-3, aqueous thorium breeder reactor, 9
breeding ratio and certain isotope concentrations vs time, graphs of, 64
comparison of breeding ratios and U233 core concentrations for various cores and core concentrations, graphs of, 66
conceptual design calculations for unsteady-state fuel concentrations and breeding ratios, 59
design criteria, 510
discussion, 509
iodine removal system, 325
two-region reactor, intermediate
scale, design characteristics
of at equilibrium conditions,
52
HRR (Homogeneous Research Reactor), feasibility study, 479
key design specifications, 481
layout plan view, 483
layout sectional elevation, 484
maintenance concept, 484
maintenance equipment, 485
plan view, 485
steam-generator specifications, 480
Hydroclone, container for in HRE-2
chemical plant, 311
dimensions of three sizes, HRE-2
chemical plant, 311
factors influencing design, 306
schematic diagram of, 307
use in core processing, 306
Hydrogen and oxygen explosions,
conditions for in HRE-2, 394
Hydrogen peroxide decomposition,
aqueous reactors, mechanisms for, 108
HYPO (High Power Water Boiler),
5, 341
description of, 341
In-pile autoclaves, for irradiation of
thorium oxide slurries, 180
In-pile loops, approximate operating
conditions for, 235
determining corrosion rates by,
exterior view of dismantling
facility, 208
assembly drawing, 207
discussion, 205
interior view of dismantling
facility, 210
physical data, 206
methods and procedures employed,
234
Instrument and control system,
HRE-2, 381
Instrument thimble, HRE-2, 383
Instrumentation, nuclear, HRE-2, 383
Instrumentation and controls, dif-
fferential pressure (D/P) cells
as level transmitters, 456
differential pressure cells for HRE-2
use, 458
differential-transformer type of float
transmitter, 456
float-type liquid-level transmitters, 456
flow transmitters for HRE-2, 459
fluid damping transmitters
(Dynatrol), discussion, 458
heated thermocouple wells for liquid-
level alarm or control, 457
liquid-level transmitters discussion,
455
nuclear instrumentation in the
HRE-2, 459
pneumatic signal transmitter,
discussion, 454
pressure transmitters, 458
pressure transmitter in safety hous-
ing, sketch, 457
weigh systems for tank invento-
tories in HRE-2, 456
Instrumentation and controls systems,
discussion in terms of homo-
geneous reactors, 454
electric signal transmitter, dis-
cussion, 454
Intermediate-Scale Homogeneous
Reactor (ISHR), conceptual
design studies for, 8
discussion and description, 504
Iodine, chemistry in reactor fuel
solutions, discussion, 319
oxidation state at high temperature
and pressure, 322
oxidation state at low temperature,
323
proposed removal system for
HRE-3, 325
removal bed, efficiency of in
HRE-2, 324
removal from aqueous homogeneous
reactors, 323
removal from high pressure system,
322
removal from HRE-2, 324
vapor-liquid distribution of, 320
vitro iodine test loop, schematic, 327
volatility under reactor conditions,
320
Isotopes, core concentrations of, for
U233 fuel, table of, 63
for U\(^{235}\) fuel, table of, 63
Isotopes, thermal microscopic absorption cross sections at various temperatures, 40
Jet-impingement device, determination of relative abrasiveness of slurries, 253
KEWB-1 (Kinetic Experiment for Water Boilers), verification of self-controlling features of solution-type reactor, 346
Krypton, adsorption, on several adsorbents, 313
election curve, 315
Lanthanum sulfate, solubility in core solution as a function of temperature, 304
LAPRE-1 (Los Alamos Power Reactor Experiment No. 1), 5, 341
critical experiment, 404
description, 401
design characteristics, 403
fuel-system properties, 399
heat removal, 402
operation, 403
LAPRE-2 (Los Alamos Power Reactor Experiment No. 2), 2, 341
critical experiments, 404
description, 404
design characteristics, 403
fuel-system properties, 399
Large heat exchangers, preliminary design of, 423
Large scale homogeneous reactors, power costs in, 552
Leak detection device, HRE-1, discussion of, 357
Leak detection system, HRE-2, 371
Leak tests, HRE-2, 374
Let-down heat exchanger, HRE-2 mock-up, 380
purpose in homogeneous reactors, 450
Liquid-level controller—HRE-2 mock-up, 380
LOPO (Low Power Water Boiler), 5, 341
description of, 341
first aqueous solution reactor, cross section of, 343
Maximum core pressure rise, homogeneous reactors, safety of, derivation of analytic expression for, 71
Metals and alloys, attack by thorium oxide slurries, 254
effect of particle size control on, 255
composition of, 212
corrosion of in uranyl carbonate solutions, out-of-pile, 213
pyrophoricity of, 276
uranyl sulfate solutions, corrosion by, out-of-pile, 216
Mock-up, HRE-2 discussion of, 380
Molybdenum oxide, as a catalyst for recombination of radiolytic gases, in slurry systems, 186
Natural uranium (U\(_{3}\)O\(_{8}\))-D\(_{2}\)O, slurry of, early work, 1, 2
slurry reactor, early work, 2
Neodymium sulfate, solubility, as affected by uranyl sulfate concentration, 305
Neptunium, chemistry in uranyl sulfate solutions, 327
Neptunium salts, removal from blanket solutions of U\(^{238}\), discussion, 101
solubility of, discussion of, 87
Neutron losses, discussion of for two-region, spherical, thorium breeders, 54
Neutron poisoning, by corrosion products, 302
by rare earths effect of irradiation time, 302
homogeneous fuels, by stainless steel corrosion products, 301
Newtonian and non-Newtonian materials, classification by shear diagram, 161
Newtonian fluids, characterization of, 160
equation for pressure drop due to friction, 168
fluid flow of, discussion of turbulent-flow region, 168
sediment movement in, discussion of, 168
Nickel alloys, slurry corrosion rates of, discussion, 250
Niobium, corrosion rates in uranyl fluoride solution, 215
Noble metals, slurry corrosion rates of, discussion, 250
Nondestructive testing methods, discussion, 278
eddy current, 279
pulse-echo ultrasonic method, discussion, 278
Nonmetallic substances, corrosion rate in uranyl sulfate solution at 100°C, 218
Non-Newtonian fluids, characterization of, 160
equation for pressure drop due to friction, 168
fluid flow of, discussion of turbulent flow, region, 168
North Carolina State College Research Reactor, discussion of, 346
Nuclear Power Group
Babcock and Wilcox breeder, 499
description, 499
design data, 502
maintenance considerations, 504
reactor vessel, 503
schematic of containment system, 501
two-region breeder, 499
capital costs, 499
design specifications, 496
discussion, 496
primary circulating pumps, 498
shielding and containment, 499
steam generators, 498
Nuclear safety, HRE-1, 355
Nuclear stability, homogeneous reactors, criteria for, discussion of, 78
criteria for, graph of, 79
definition of, 67
discussion of, 77
effect of removal rate of Xe135, 80
influence of changes in flow rates, 79

Off-gas system, HRE-1, discussion of, 352
One- and two-region homogeneous reactors, nuclear characteristics, definition of, 29
One-region converter reactors, discussion of, 18
One-region homogeneous reactors, spherical, criticality calculations, adequacy of 2-group theory for, 33
One-region power converter, homogeneous, application, 12
One-region power reactors, preliminary design studies, 495
One-region Pu producer, homogeneous, application of, 12
One-region PuO$_2$--UO$_2$--D$_2$O power reactors, fuel costs in, 530
fuel processing flowsheet for, 530
One-region reactors, critical equation for, discussion of, 66
definition of, 13
fuel costs, 533
fuel costs in, as a function of power level, 543
spherical, breeding ratio values compared with two-region reactors, 46
zero poisons, breeding ratio for, 47
One-region thorium breeder, discussion of, 20
One-region thorium breeder reactors, spherical, equilibrium results for, 58
One-region UO$_2$SO$_4$--Li$_2$SO$_4$--D$_2$O reactors, fuel costs in, 532
One-region UO$_3$--PuO$_2$--D$_2$O reactors, spherical, reactor design characteristics for equilibrium conditions, 60
One-region uranium-plutonium reactors, spherical, equilibrium results for, 59
ORNL large-scale two-region reactors, conceptual designs, 505
Oxygen injection equipment, purpose in homogeneous reactors, 452
HRE-2, purpose of, 362
HRE-2 mock-up system, 380
PAR, (Pennsylvania Advanced Reactor), circulating pumps, 491
cross section through main loops, 489
dry maintenance operations, 490
plan view of reference design 1A, 488
proposal to build homogeneous reactor, 10
reference design, 487
reference design for primary circulating pump maintenance, 490
remote maintenance facility, 492
steam generator reference design 1A, 491
Piping and welded joints, discussion of criteria for, 428
Piping joints, discussion in terms of maintenance, 470
Piping layouts, discussion of design criteria, 428
Piping system, design of in large scale plant, 469
Platinum, corrosion rates in uranyl fluoride solution, 215
Plutonium, adsorption of on metal walls, 330
adsorption on various materials, 330
alternative methods for removal from fuel solutions, 330
behavior in uranyl sulfate solutions under dynamic conditions, 329
blanket processing, conceptual flow diagram, 303
carbonate, aqueous solutions of, discussion, 101
chemistry in uranyl sulfate solutions, 326
chemistry of, in uranyl sulfate solutions, 326
costs, as a function of Pu240 content, 518
solubility in uranyl sulfate solution, 327
Plutonium-power reactors (aqueous), characteristics of, 494
discussion, 493
fuel costs, 537, 538
effect of U238 concentration on, 540
fuel processing flowsheet, 537
one-region, fuel costs in, 531
two-region, fuel costs in, 535, 538
Plutonium producer, chemical processing of, 326
Plutonium salts, solubility of, discussion of, 99
valence states and solubilities of, 100
Power costs, effect of power level on, 553
in various homogeneous reactors, summary, 553
Wolverine Reactor, 476
Power density, HRE-1, 350
spherical homogeneous reactors, two-region, effect of core thorium concentration on, 45
Power excursion, homogeneous reactors, following reactivity addition, 67
Pressure vessel, HRE-1, discussion of, 350
Pressure-vessel design, discussion, 411
Pressure-vessel steels, physical metallurgical properties, effect of neutron irradiation, 279, 280
selection for service under irradiation, 282
Pressurizer, discussion in terms of remote maintenance, 469
discussion of designs, 427
discussion of methods for pressurizing aqueous fuel systems, 423
for solutions, discussion, 424
Protactinium, equilibrium levels of in thorium breeder reactors, 65
Protactinium salts, removal from thorium breeders, discussion, 101
solubility of, discussion of, 87
Protactinium-233, separation from thorium oxide blanket, discussion of, 332
Purex process, costs for, 519
Purge pumps: see Diaphragm pumps
Radiation corrosion, effect of solution composition and flow velocity on Zircaloy-2, 244
relation between fission power density and corrosion rate for Zircaloy-2, 243
Radiation decomposition, aqueous reactors, discussion, 101
Gas production, initial rates for hydrogen from reactor-irradiated uranium solutions, 106
Homogeneous reactors, 7
of water, aqueous reactors, discussion, 104
Radioisotope-production reactor, 6
Radiolytic gases, recombination of, in HRE-2, 362
Rare earths, as poisons in homogeneous fuels, 301
chemistry of, 304
Rare earth sulfates, solubility in fuel solution at 280°C, 305
Reactivity change, homogeneous reactors, safety of, as a function of thorium slurry settling, 75
Reactor components, large scale, costs for, 546
Reactor vessel, large scale, NPG, B & W breeder, 503
Wolverine reactor, 477
Recombination, radiolytic gas, in HRE-2, 362
Recombiner, catalytic, HRE-2, 364
design of catalytic, 436
discussion in terms of catalytic, 436
drawing of experimental flame-type, 438
flame type for HRE-1, 438
high-pressure type, 439
natural-circulation type, 439
Reflector system, HRE-1, 350
Refrigeration system, purpose in HRE-2 operation, 452
Remote handling equipment, for dismantling corrosion-testing equipment, 208
Remote maintenance, costs for, 549
general discussion, 468
HRE-1, 357
HRE-2, 387
tools for, 388
NPG, B & W breeder, 504
PAR equipment, 490
Rocking autoclaves, determining corrosion rates by, discussion, 205
Safety, boiling homogeneous reactors, discussion of, 67
Homogeneous reactors, conditions for neglecting radiolytic gas formation, 76
discussion of effects of hydrolytic decomposition of water, 76
following reactivity additions, 67
mathematical theory for, 68
HRE-2, 395
Samplers, HRE-2, for fuel and blanket liquids, 366
Sampling equipment, purpose in homogeneous reactors, 448
Saturated steam cycles, thermal efficiencies of, 473
Sedimentation, of suspensions, 133
Shield, HRE-2, 366
radiation dosage through, 366
Shielding, compartmentalized type, discussion in terms of maintenance, 470
discussion in terms of remote maintenance, 470
HRE-1, 350
discussion of, 357
Single-region thorium breeder, homogeneous, application of, 12
Slurries, UO₃·H₂O, characteristics of, 139
oxidation of, 136
uranium dioxide, oxidation of, table, 136
uranium oxide, discussion of, 135
uranium trioxide, discussion of, 135
Slurry blanket, HRE-2 mock-up, operation of, 177
hydrodynamics, discussion, 410
system, HRE-2 mock-up flow-sheet, 177
Slurry corrosion, discussion, 248
discussion of corrosivity and erosivity of slurry materials, 254
impingement erosion of gold, platinum, Ti-75A, and type-347 SS, photo, 251
types and mechanisms of attack by aqueous slurries, discussion, 250
Slurry pressurizers, discussion, 427
Slurry reactors, natural uranium oxide-D2O, early work, 4
parameters for cost calculations, 524
Sols, discussion of, 129
lyophyllic, discussion of, 129
Soluble fission products, discussion, 317
Solvent extraction, removal of soluble fission products, discussion of, 318
Spherical reactors, criticality calculations for, 30
Stainless steel, attack by thorium oxide slurry, effect of calcination temperature and circulation velocity on, 258
corrosion in oxygenated uranyl sulfate solution, effect of van de Graaf electrons, 231
corrosion in uranyl sulfate solutions, discussion of irradiation effect at HRE-1 power densities, 231
mechanism for (qualitative), 226
under irradiation and at high temperature, discussion of, 230
corrosion rate, discussion of suitability to homogeneous reactors, 218
corrosion rates in uranyl sulfate solutions at 100 to 175°C, 220
at 25 to 175°C, effect of solution flow rate, 220
at 25 to 175°C, effect of solution flow rate, graph, 221
at different temperatures, 224
discussion of effects of variables, 226
discussion on suitability to HIRE-1 and HIRE-2 applications, 219
effect of chromate additions, 225
effect of lithium sulfate, 226
effect of corrosion inhibitors, 224
effect of sulfate additions, 226
effect of sulfuric acid concentration on critical velocity at 250°C, 223
temperature dependence of flow effects, 223
up to 100°C, 219
250°C, weight loss vs critical velocity, 222
neutron poisoning by corrosion products of, 301
slurry corrosion of, effect of additives, 259
effect of boiling, aerated fuel solution containing chloride, bromide, and iodine additives, 286
stress-corrosion cracking of, 283
effect of pretreatment, 284
effect of pretreatment with boiling uranyl sulfate solution, 285
uranyl sulfate solutions, corrosion by, out-of-pile, 216
Static autoclaves, determining corrosion rates by, discussion, 199
Steam generators, discussion, 419
effect of thermal cycling with diphenyl, 420
for slurry service, discussion, 423
HIRE-2 mock-up, 380
large scale, 498
discussion in terms of remote maintenance, 469
spare for the HIRE-2, discussion, 422
specifications for HRR, 480
Steam power cycles, discussion, 472
homogeneous reactors, discussion, 471
Stellites, corrosion rate in uranyl sulfate solution at 100°C, 218
corrosion resistance of, effect of hydrogen atmosphere, 259
slurry corrosion rates of, discussion, 250
Storage tanks (fuel), drawings of several types, 434
purpose in HIRE-2, 434
Storage tanks (slurry), purpose in HRE-2, 435
Stress-corrosion cracking, discussion of the phenomenon in terms of boiler water, 290
discussion of the phenomenon in terms of the HIRE-2 leak detector system, 290
discussion of the phenomenon in terms of thorium oxide slurries, 289
effect of chloride concentration on type-347 stainless steel, 285
relationship between volume fraction of solids, particle size, and hydrodynamic interactions, 161
Suspensions: see Slurries
Tantalum, corrosion rates in uranyl fluoride solution, 215
Thermal breeder-reactor (homogeneous), 6
Thermal stresses, analysis for spherical reactors, 412
Thorex process, adaptability of the flowsheet, 335
alternative methods for, 335
average decontamination factors in the pilot plant, 334
costs for, 519
discussion of, 332
feed preparation flow sheet, 331
solvent extraction co-decontamination flowsheet, 331
solvent extraction step, 333
uranium isolation and third cycle flowsheet, 332
Thoria: see Thorium oxide
Thorium breeder reactors, capital costs, breakdown, 546
fuel costs, in, 544
Thorium formate, thermal decomposition to produce thorium oxide, 141
Thorium hydroxide, as starter material for slurries, 141
Thorium hydroxide gel, use in production of spheres by spraying, 132
Thorium nitrate, calcination to produce thorium oxide, 141
solubility of, prevention of hydrolysis of, 86
water system, discussion of, 99
Thorium oxalate, hydrothermal decomposition of the aqueous slurry to produce thorium oxide, 140
Thorium oxide, abrasion by, 134
adsorption of uranium and neodymium, effect of calcination temperature, 336
chemical processing of the blanket, 332

Stress cracking, HRE-2, 373
Strontium sulfate, temperature dependence of solubility in core solutions, 305
Superheated steam, discussion in terms of economy, 473
SUPO (Super Power Water Boiler), 5, 341
ability to absorb reactivity increases, 346
as a boiling solution reactor, 21
description of, 341
description of modifications to, 342
kinetic experiments to determine inherent safety of water boilers, 345
neutron flux spectrum, 344
radiolytic H₂ and O₂ production in, 344
Suspending, equation for correlation of thermal conductivity data of, 160
of UO₃·H₂O rods and platelets, viscosity measurements by Saybolt viscometer, 161
heat transfer for turbulent flow, correlation with Dittus-Boelter equation, 174
hindered settling velocity of, results of theoretical and experimental work, 172
ThO₂ or UO₂, design of systems and components for, 134
viscosity of, relationship between volume fraction of solids and particle size, 160
Thoric oxide, abrasion by, 134
adsorption of uranium and neodymium, effect of calcination temperature, 336
chemical processing of the blanket, 332

Investigation of vapor-phase cracking, 288
Strontium sulfate, temperature dependence of solubility in core solutions, 305
Superheated steam, discussion in terms of economy, 473
SUPO (Super Power Water Boiler), 5, 341
ability to absorb reactivity increases, 346
as a boiling solution reactor, 21
description of, 341
description of modifications to, 342
kinetic experiments to determine inherent safety of water boilers, 345
neutron flux spectrum, 344
radiolytic H₂ and O₂ production in, 344
Suspending, equation for correlation of thermal conductivity data of, 160
of UO₃·H₂O rods and platelets, viscosity measurements by Saybolt viscometer, 161
heat transfer for turbulent flow, correlation with Dittus-Boelter equation, 174
hindered settling velocity of, results of theoretical and experimental work, 172
ThO₂ or UO₂, design of systems and components for, 134
viscosity of, relationship between volume fraction of solids and particle size, 160
Thoric oxide, abrasion by, 134
adsorption of uranium and neodymium, effect of calcination temperature, 336
chemical processing of the blanket, 332
chemical processing of the blanket, adaptability of the flowsheet, 335
adsorption of cations on, 337
alternative methods, 335
average decontamination factors for Thorex pilot plant, 334
feed preparation flowsheet, 331
solvent extraction codecontamination flowsheet, 331
solvent extraction step, 333
uranium isolation and third cycle flowsheet, 332
erosion and corrosion by slurries of, discussion of, 254
large scale production of, 141
characterization of the particles, 143
particle shapes, 145
pilot plant preparation, flowsheet for, 142
preparation of, 147
by oxalate decomposition, x-ray crystallite size and surface area, table, 146
effect of high-temperature water on physical properties, 149
effect of variables on particulate properties, 144
for slurries, 140
relationship between average crystallite size and surface area for 400 to 900°C firings, 147
sedimentation of, 132
selected properties for producing slurries, discussion of, 139
specific heat constants of, 159
surface area of, 148
suspensions of, physical properties of (engineering standpoint), 160
uniform particles of, effect of method of preparation of oxalate, 146
Thorium oxide slurries, attack of various metals by, 254
behavior of settled beds of, 130
Bingham plastic type, resuspension velocity for, 171
blanket, radiation decomposition of aqueous phase of, discussion, 183
caking tendencies, 130
catalytic recombination of radio-lytic gases, discussion of, 183
inherent activity of, 185
survey of possible catalysts for, 185
corrosion by, comparative corrosion rates and particle degradation at 300°C, 256
discussion of shape effects, 260
effect of additives, 259
effect of calcination temperature on corrosivity and particle degradation at various velocities, 258
effect of particle-size control, 255
effect of radiation in gently rocked autoclaves, 262
effect of velocity on the attack of different shapes of stainless steel samples, 261
critical velocity for turbulent flow of, 159
discussion of, 130
discussion of colloidal properties, 131
effect of additives on settling rates, 156
effect of firing temperature on high-temperature settling rates, 155
effect of radiation on, 182
effect of slurry concentration on settling rate, 154
effect of sodium silicate on the hindered settling rate, graph, 157
effect of thorium sulfate on high-temperature sedimentation properties, 156
effect of thorium sulfate on hindered settling rate of slurries, graph, 156
flocculation tendencies, 129
friction factor, 174
friction factor vs Reynolds number data for turbulent flow, 169
heat transfer characteristics of, 174
high-temperature sedimentation characteristics, 151
hindered settling rate, effect of angle of inclination of the container, 173
hindered-settling studies of, 171
irradiated, equilibrium radiolytic gas pressure of, 189
irradiations of, parts and assembly of in-pile autoclave, 180
pH vs sulfate concentration, 156
present status of laboratory development, 158
radiation stability of, 179
rheological properties at elevated temperatures, 168
rheological properties of, 165
room-temperature sedimentation characteristics, 151
sedimentation characteristics, 149
stress corrosion cracking in, discussion, 289
temperature-particle size effects on settling rate, 153
typical high-temperature settling curve, 153
viscosity measurement during irradiation, 181
yield stress of, 164
yield stress of, effect of electrolyte, 167
yield stress of, effect of particle diameter and concentration, 166
Thorium oxide sols, control of flocculation by additives, 131
Thorium oxide-uranium oxide slurries, irradiated, gas recombination rate constants from equilibrium pressures, 188
Thorium oxide-uranium oxide slurries, radiolytic gas production and recombination of, 188
Thorium oxide-uranium oxide slurries, recombination of radiolytic gases, reaction rates for stoichiometric mixtures of H₂ and O₂, 187
Thorium phosphate, solubility of, prevention of hydrolysis of, 87
solutions of, discussion, 98
Thorium salts, solutions of, discussion, 98
Titanium, attack by thorium oxide slurry, effect of calcination temperature and circulation velocity on, 258
effect of irradiation on metallurgical properties of, 270
fabrication of, joint configuration of air weldment, 272
recommended conditions and configuration for a typical titanium weldment, 274
summary of conditions for making weldments, 274
welding, 271
homogeneous reactor metallurgy of, 262
physical metallurgy of, mechanical properties, 270
pyrophoricity of, 275
slurry corrosion resistance of, effect of oxygen or hydrogen atmosphere and pH of system, 259
uranyl sulfate solutions, corrosion by, out-of-pile, 216
55A, corrosion rates in uranyl sulfate solutions (irradiated), discussion, 247
75A, corrosion rates in uranyl sulfate solutions (electron irradiated), discussion, 248
Titanium alloys, corrosion of, out-of-pile by uranyl carbonate, 213
corrosion rates in uranyl fluoride solution, 214
Titanium and titanium alloys, corrosion rates in uranyl sulfate solutions (irradiated), discussion, 246
corrosion rates in uranyl sulfate solutions (unirradiated), discussion, 245
slurry corrosion rates of, 250
homogeneous reactor metallurgy of, 262
Toroid rotator, determining corrosion rates by, photograph, 200
Toroids, determining corrosion rates by, discussion, 199
Turbines, discussion in terms of cost, 471
Turbogenerator plant efficiency, effect of steam conditions on, 473
Two-region breeder reactors, effect of core diameter and core thorium concentration on fuel cost, 525
fuel cost as a function of blanket thickness and thorium concentration, 524
Two-region converter reactors, discussion of, 19
Two-region homogeneous reactors, spherical, criticality calculations, adequacy of 2-group theory for, 36
Two-region homogeneous thorium breeder reactor, processing flowsheet for, 522
Two-region Pu producer, homogeneous, application of, 12
Two-region reactors, cylindrical, gross breeding ratio and maximum power density at core wall, 49
definition of, 13
slurry, spherical, design characteristics, 46
effect of blanket ^{233}U concentration on breeding ratio and wall power density, 47
effect of core thorium concentration, etc., 48
homogeneous, effect of core thorium concentration and wall power density on breeding ratio, 45
spherical, breeding ratio values compared with one-region reactors, 46
thorium breeders, discussion of neutron losses for, 54
effect of core poison fraction on breeding ratio, 54
effect of copper addition on breeding ratio, 55
effect of H_2O concentration on breeding ratio, 55
nuclear characteristics of at equilibrium conditions, 50
thorium breeder, design specifications, 508
discussion of, 20
homogeneous type, solution core, application of, 12
homogeneous, slurry core, application of, 12
Two-region thorium breeder reactor, discussion, 507
Two-region ^{233}U breeder reactor, spherical, design nuclear characteristics of during initial operating period, 62
Two-region UO_3-PuO$_2$-D$_2$O reactors, conceptual design data for, 57
Two-region uranium-plutonium reactors, discussion of, 56
U_3O_8, oxidation of slurries of, 138
^{233}U, costs, 518
separation from thorium oxide blanket, discussion of, 332
^{235}U burner reactors, fuel costs in, 541
costs, as a function of enrichment, 518
UF_6 reactors, gaseous homogeneous, discussion of, 23
natural uranium, early work, 3
Uranium dioxide, erosion and corrosion by slurries of, discussion, 254
oxidation of slurries of, 138
Uranium hydroxide trihydrate, slurries, solubility of, 139
Uranium losses, core processing by the uranyl peroxide method, 319
Uranium oxide, suspensions of, nuclear behavior of zero power reactor, 139
specific heat constants of, 160
viscosity of, 161
Uranium oxide slurries, rheological properties of, 164
Uranium phosphate, aqueous solutions of, discussion, 95
Uranium-plutonium systems, fuel costs in, 530
Uranium trioxide, characteristics of slurries of, 139
chemical stability of, discussion, 135
crystal forms of, 137
erosion and corrosion by slurries of, discussion, 254
platelet slurries, prevention of muds by additives, 131
preparation of, 137
slurries of, crystals of various hydrates, 136
discussion, 135
solubility in H_2SO_4-H_2O mixtures, 91
solubility in H₃PO₄, 95
solutions in H₃PO₃, vapor pressure of, 117
Uranium trioxide-H₂SO₄H₂O (uranyl sulfate), solutions of, table of pH, 118
Uranium trioxide-HF system, aqueous phase equilibria of, 94
Uranium trioxide-Li₂O-CO₂-H₂O system, phase diagram for at 250°C and 1500 psi, 98
Uranium trioxide-SO₃-H₂O system, phase diagrams for elevated-temperature systems, 88
Uranyl carbonate, aqueous solutions of, corrosion tests in, 211
corrosion by of metals and alloys, 213
discussion, 97
variation of solubility of Li₂CO₃ in, 97
Uranyl chromate, aqueous solutions of, discussion, 96
Uranyl chromate-water system, phase diagram, 96
Uranyl fluoride, aqueous solutions of, corrosion of metals and alloys by, 214
corrosion tests in, 213
discussion, 95
Uranyl nitrate, aqueous solutions of, discussion, 93, 115
Uranyl nitrate and Th(NO₃)₄, solutions of, hydrolytic stability at elevated temperatures, 99
Uranyl nitrate-water system, phase diagram, 94
Uranyl peroxide precipitation, removal of soluble fission products, discussion of, 318
schematic flow diagram, 319
Uranyl salt solutions, improvement of solubility at elevated temperatures, 86
Uranyl sulfate, and heavy water, solutions of, densities, 114
and light water, solutions of, densities, 114
aqueous solutions of, application of capillary rise technique for surface tension detns., 117
containing CuSO₄ and H₂SO₄, phase transition temperatures of, 92
corrosion rates of several alloys in, 216
corrosion tests in, discussion, 215
densities for both light and heavy water at elevated temperatures, 113
effect of chromate additions on corrosion of stainless steel, 225
effect of CuSO₄ and NiSO₄ on phase transition temperatures, 92
estimated heat capacities, table, 116
heat capacity, 115
hydrogen ion concentration, 119
surface tension, 116
surface tension in light water at elevated temperature, 117
vapor pressure, 115
viscosities for both light and heavy water, table, 115
viscosity of, 115
dilute solutions, effect of excess H₂SO₄ on phase equilibria, 90
solubility of at elevated temperature, characteristics of saltwater systems, 87
solution, corrosivity of, experimental conditions of tests for effect of chloride additions, 288
solutions (boiling), corrosivity of, effect of chloride, bromide and iodine additives on type-347 stainless steel, 286
pretreatment of type-347 stainless steel U-bend specimens, effect, 285
two-liquid phase region of in ordinary and heavy water, 90
Uranyl sulfate-H₂SO₄-H₂O, coexistence curves for two liquid phases, 89
Uranyl sulfate-lithium sulfate, aqueous solutions of, second liquid phase temperature of, 91
Uranyl sulfate-lithium sulfate power reactors, fuel costs in, 532
one-region, fuel costs, 532
fuel costs for batch operation, 534

Thermal sulfate-water system, phase diagram for, 87

Valve actuators, discussion, 445
Valves, considerations in terms of slurry service, 447
designs used in HRE-2, 445
discussed as key components in aqueous reactors, 445
drawing of HRE-2 letdown and low-pressure valves, 446
gas metering, for regulating flow of O\textsubscript{2} to HRE-2 high-pressure system, 448
let-down, HRE-2 mock-up, 380

Uranium materials for fuel or slurry use, 447

Water, decomposition of in Th(NO\textsubscript{3})\textsubscript{4}
solutions subjected to irradiation, discussion of, 111
Water boiler, homogeneous type, application of, 12
kinetic experiments to determine inherent safety of, 345
Welded joints and piping, discussion of criteria for, 428
discussion, 428
Weldments, discussion of method for HRE-2 core tank, 273
fabricability of Zircaloy-2, effect of heat treatment on crystal structures, 266
for titanium fabrication, 271
for zirconium fabrication, 271
joint configuration of air weldment for titanium, 272
joint configuration of weldments for HRE-2 core tank, 272
recommended conditions and configurations for titanium, 274
summary of conditions for titanium, 274
summary of conditions for zirconium, 274
welding set-up for HRE-2 core tank, 272

Westinghouse and Pennsylvania Power and Light Co., industrial participation in homogeneous reactors, 10
Westinghouse 400A pump, for HRE-2 fuel, 415
Wolverine Electric Cooperative
Reactor, containment, 478
design data for revised primary system, 475
estimated power costs in, 476
Foster-Wheeler design study, 473
fuel circulating pump, 477
ORNL design study, 473
plan and sectional elevation of revised plant, 474
pressurizer, 477
primary heat exchanger, 477
proposal to build homogeneous reactor, 10
reactor vessel, 477
shielding, 478

Zircaloy-2, attack by thorium oxide slurry, effect of calcination temperature and circulation velocity on, 258
corrosion in uranyl sulfate solutions, comparison of effect of oxygenated solution with de-aerated water, 234
discussion of autoclave tests in LITR and MTR, 242
discussion of difference between in-pile and out-of-pile effects, 238
discussion of effect of fast electron irradiation, 242
discussion of effect of variables on, 241
discussion of results of radiation corrosion experiments, 242
effect of irradiation on metallurgical properties of, 271
fabricability of, effect of heat treatment of weldments, 264
improved fabrication schedule as a result of morphological studies, 266
fabrication of, comparison of joint design and welding conditions for air-welding of
titanium and trailer-welding of Zircaloy-2, 275
homogeneous reactor metallurgy of, 262
fabrication and morphology, 263
irradiation corrosion rate in irradiated, enriched fuel solution, discussion, 237
physical metallurgy of, discussion of fracture appearance of impact samples, 270
discussion of stringers, 263
impact energy curves for the material when fabricated by two methods, 274
microstructure of heat-treated material, 267
tensile properties, 268
radiation corrosion in uranyl sulfate solutions, effect of solution composition and flow velocity, 244
results of high-temperature loop tests, 239
radiation corrosion of, relation between fission power density and corrosion rate, 243
slurry corrosion rates of, effect of radiation in a gently rocked autoclave, 262
Zircaloy-stainless steel joint, IIRE-2, 413
Zirconium, corrosion rates in uranyl sulfate solutions, discussion of loop and autoclave tests, 241
Zirconium, effect of irradiation on metallurgical properties of, 271
Zirconium, fabrication of, summary of conditions for making weldments, 274
welding, 271
homogeneous reactor metallurgy of, 262
physical metallurgy of, effects of notches and cracks, 270
pyrophoricity of, 275
uranyl sulfate solutions, corrosion by, out-of-pile, 216
Zirconium alloys, corrosion rates in uranyl fluoride solution, 214
corrosion resistance of, effect of gaseous atmosphere, 259
development of radiation corrosion resistant, Zr-15% Nb, 276
discussion, 276
slurry corrosion rates of, discussion, 250
and titanium, physical metallurgy of, mechanical properties, 266
and Zircaloy-2, corrosion rates in uranyl sulfate solutions (unirradiated), 233
long-term rates in high-temperature solutions, 233
results of autoclave tests, 237
under various conditions, discussion, 232
Zirconium-15% Nb, corrosion rates in uranyl sulfate solutions, discussion, 242, 276, 277