HYBRID COMPUTER SIMULATION OF THE MSBR

O. W. Burke

ABSTRACT

A hybrid computer simulation model of the reference 1000 MW(e) MSBR was developed. The model simulates the plant from the nuclear reactor through the steam throttle at the turbine. The simulation model is being used to determine the dynamic characteristics of the plant as well as to discover the problems associated with the control of the plant.

NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
CONTENTS

1. Introduction 4
2. Description of Computer 4
3. Description of MSBR System 5
4. Development of the Computer Model of the Plant 6
 4.1 Steam Generator Model 6
 4.2 The Analog Computer Model of the System Exclusive of the Steam Generator 16
5. Results of Simulation Exercises 33
6. References 43
7. Appendix .. 44
 7.1 A: Development of Computer Model 44
 7.2 B: Steam Generator Equation Variables 66

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
1. INTRODUCTION

In order to get a "feel" for the dynamic behavior of the MSBR plant as well as to discover the plant control problems and their solutions, it was imperative that a simulation model of the plant be developed.

Due to the highly nonlinear nature of the once-through steam generator, it was deemed necessary to have a highly detailed model of this part of the system. Consequently, the model of the steam generator was implemented on the hybrid computer. The reactor kinetics, core heat generation and heat transfer, primary heat exchanger heat transfer, piping lags, system controllers, etc., were simulated on the analog computer. The two computers were interfaced to form a unified simulation model of the system.

2. DESCRIPTION OF COMPUTER*

The ORNL analog-hybrid computer was used in the simulation. It consists of the new hybrid computer and the older analog computer. The hybrid computer consists of a PDP-10 digital computer and an AD-4 analog computer. The PDP-10 was manufactured by the Digital Equipment Corporation, Maynard, Mass., and the AD-4 was manufactured by Applied Dynamics, Inc., Ann Arbor, Mich. Essentially all of the older analog computer equipment was manufactured by Electronic Associates, Inc., Long Branch, N. J.

The PDP-10 digital computer is a 36-bit word machine with a fast memory storage capacity of 32K words.

The AD-4 analog computer is a solid state, ±100 V reference machine. The mode switching is accomplished in 1 microsec. It contains patchable logic components

* Mention of manufacturers, products, brand names, etc., is for information purposes only and in no way implies an endorsement by ORNL or the U. S. AEC.
and the interface for communicating with the PDP-10 digital machine. The interface contains an analog to digital converter (ADC) with a 32-channel multiplexer. It also has 20 digital to analog converters (DACS), 12 of which are the multiplying type. The AD-4 has 60 integrators, approximately 100 other amplifiers, 48 digital coefficient units, 68 servo-set potentiometers, 12 hand-set potentiometers, and 16 multipliers. The patchable logic consists of gates, flip-flops, registers, counters, etc.

The older analog equipment consists of 58 integrators, 102 other amplifiers, 250 hand-set potentiometers, 12 quarter-square multipliers, 15 servo-multipliers, 10 ten-segment diode function generators, 4 transport lag devices, etc.

3. DESCRIPTION OF MSBR SYSTEM

The proposed 1000 MW(e) MSBR plant consists of a 2250 MW(t), graphite moderated, molten salt reactor, 4 shell and tube primary heat exchangers, and 16 shell and tube supercritical steam generators. The reactor core is made up of two zones. The central zone is ~14.4 ft in diameter and ~13 ft high with a primary salt fraction of 0.13. The outer zone is an annular region ~1.25 ft thick having a salt volume fraction of 0.37.

The molten salt fuel flows, at a constant rate, upward through the passages in the graphite core in a single pass and then to the tube side of four vertical, single pass, primary heat exchangers. The salt temperature entering the core is 1050°F and that at the core exit is 1300°F.

The heat generated in the primary salt in the core is transferred from the tube side of the primary heat exchangers to a countercurrent secondary salt passing through the shell side. The secondary salt flows in a closed secondary loop to the horizontal supercritical
steam generators. The four secondary loops (one for each primary heat exchanger) are independent of each other, with each loop flowing to four steam generators. The temperature of the secondary salt entering the steam generators is 1150°F and on leaving the steam generators its temperature is 850°F. The secondary salt flow rate can be changed by changing the pump speed.

The shell-and-tube supercritical steam generators are countercurrent, single-pass, U-tube exchangers ~77 ft in length and 18 in. in diameter. Feedwater enters the steam generators at 700°F and ~3770 psia pressure, when operating at design point steady state. At design point, the exit steam conditions are 1000°F and ~3600 psia pressure.

A flow diagram of the MSBR plant is shown in Fig. 1. The interesting physical constants are listed in Table 1, and the plant parameters are listed in Table 2.

4. DEVELOPMENT OF THE COMPUTER MODEL OF THE PLANT

As previously stated, the hybrid computer is used to simulate the steam generator in some detail. The older analog computer is used to simulate the rest of the system.

Since the programming techniques for the two above-mentioned computers are quite different in some respects, the hybrid model of the steam generator shall be discussed apart from the analog model of the rest of the system.

4.1 Steam Generator Model

The mathematical model of the steam generator consists of the differential equations expressing the conservation of mass, momentum, and energy of the water and secondary salt. In this model, the variation in the density of the secondary salt was neglected and
Fig. 1. Flow Diagram of MSBR Plant. The quantities shown are totals for the entire plant.
Table 1. Physical Constants

A. Properties of Materials

<table>
<thead>
<tr>
<th></th>
<th>(C_p) Btu lb(^{-1}) °F(^{-1})</th>
<th>(\rho) lb/ft(^3)</th>
<th>(k) Btu hr(^{-1}) °F(^{-1}) ft(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Salt</td>
<td>0.324</td>
<td>207.8 at 1175°F</td>
<td>----</td>
</tr>
<tr>
<td>Secondary Salt</td>
<td>0.360</td>
<td>117 at 1000°F</td>
<td>----</td>
</tr>
<tr>
<td>Steam</td>
<td></td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>726°F</td>
<td>6.08</td>
<td>22.7</td>
<td>----</td>
</tr>
<tr>
<td>750°F</td>
<td>6.59</td>
<td>11.4</td>
<td>----</td>
</tr>
<tr>
<td>850°F</td>
<td>1.67</td>
<td>6.78</td>
<td>----</td>
</tr>
<tr>
<td>1000°F</td>
<td>1.11</td>
<td>5.03</td>
<td>----</td>
</tr>
<tr>
<td>Hastelloy-N</td>
<td></td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>1000°F</td>
<td>0.115</td>
<td>548</td>
<td>9.39</td>
</tr>
<tr>
<td>1175°F</td>
<td>0.129</td>
<td>----</td>
<td>11.6</td>
</tr>
<tr>
<td>Graphite</td>
<td>0.42</td>
<td>115</td>
<td>----</td>
</tr>
</tbody>
</table>

B. Reactor Core

<table>
<thead>
<tr>
<th></th>
<th>Central Zone</th>
<th>Outer Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter, ft</td>
<td>14.4</td>
<td>16.9</td>
</tr>
<tr>
<td>Height, ft</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Salt volume fraction</td>
<td>0.132</td>
<td>0.37</td>
</tr>
<tr>
<td>Fuel</td>
<td>(^{233})U</td>
<td></td>
</tr>
<tr>
<td>Graphite-to-salt heat transfer coefficient, Btu hr(^{-1}) ft(^{-2}) °F(^{-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary salt</td>
<td>(-1.789 \times 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>graphite</td>
<td>(+1.305 \times 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>Thermal neutron lifetime, sec</td>
<td>3.6 \times 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Delayed neutron constants, (\beta = 0.00264)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>(B_i)</td>
<td>(\lambda_i (sec^{-1}))</td>
</tr>
<tr>
<td>1</td>
<td>0.00102</td>
<td>0.02446</td>
</tr>
<tr>
<td>2</td>
<td>0.00162</td>
<td>0.2245</td>
</tr>
</tbody>
</table>

C. Heat Exchangers

<table>
<thead>
<tr>
<th></th>
<th>Primary Heat Exchanger</th>
<th>Steam Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, ft</td>
<td>18.7</td>
<td>72</td>
</tr>
<tr>
<td>Triangular tube pitch, in.</td>
<td>0.75</td>
<td>0.875</td>
</tr>
<tr>
<td>Tube OD, in.</td>
<td>0.375</td>
<td>0.50</td>
</tr>
<tr>
<td>Wall thickness, in.</td>
<td>0.035</td>
<td>0.077</td>
</tr>
<tr>
<td>Heat transfer coefficients, Btu hr(^{-1}) ft(^{-2}) °F(^{-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tube-side-fluid to tube wall</td>
<td>3500</td>
<td>3590</td>
</tr>
<tr>
<td>tube-wall conductance</td>
<td>3963</td>
<td>1224</td>
</tr>
<tr>
<td>shell-side-fluid to tube wall</td>
<td>2130</td>
<td>1316</td>
</tr>
</tbody>
</table>
Table 2. Plant Parameters (Design Point)

Reactor Core

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat flux</td>
<td>7.68×10^9 Btu/hr [2250 Mw(th)]</td>
</tr>
<tr>
<td>Primary salt flowrate</td>
<td>9.48×10^7 lb/hr</td>
</tr>
<tr>
<td>Steady state reactivity, ρ_o</td>
<td>0.00140</td>
</tr>
<tr>
<td>External loop transit time of primary salt</td>
<td>6.048 sec</td>
</tr>
</tbody>
</table>

Heat generation

<table>
<thead>
<tr>
<th>Zone</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1830 Mw(th)</td>
</tr>
<tr>
<td>II</td>
<td>420 Mw(th)</td>
</tr>
<tr>
<td>Salt volume fraction</td>
<td>0.132</td>
</tr>
<tr>
<td>Active core volume</td>
<td>2117 ft3</td>
</tr>
<tr>
<td>Primary salt volume</td>
<td>279 ft3</td>
</tr>
<tr>
<td>Graphite volume</td>
<td>1838 ft3</td>
</tr>
<tr>
<td>Primary salt mass</td>
<td>58,074 lb</td>
</tr>
<tr>
<td>Graphite mass</td>
<td>212,213 lb</td>
</tr>
<tr>
<td>Number of graphite elements</td>
<td>1466</td>
</tr>
<tr>
<td>Heat transfer area</td>
<td>30,077 ft2</td>
</tr>
<tr>
<td>Average primary salt velocity</td>
<td>~4.80 ft/sec</td>
</tr>
<tr>
<td>Core transit time of primary salt</td>
<td>2.71 sec</td>
</tr>
</tbody>
</table>

Primary Heat Exchanger (total for each of four exchangers, tube region only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary salt flow rate</td>
<td>1.78×10^7 lb/hr</td>
</tr>
<tr>
<td>Number of tubes</td>
<td>6020</td>
</tr>
<tr>
<td>Heat transfer area</td>
<td>11,050 ft2</td>
</tr>
<tr>
<td>Overall heat transfer coefficient</td>
<td>993 Btu hr$^{-1}$ ft$^{-2}$</td>
</tr>
<tr>
<td>Tube metal volume</td>
<td>30 ft3</td>
</tr>
<tr>
<td>Tube metal mass</td>
<td>16,020 lb</td>
</tr>
</tbody>
</table>

Steam Generator (total for each of 16 steam generators, tube region only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam flowrate</td>
<td>7.38×10^5 lb/hr</td>
</tr>
<tr>
<td>Number of tubes</td>
<td>434</td>
</tr>
<tr>
<td>Heat transfer area</td>
<td>4,102 ft2</td>
</tr>
<tr>
<td>Tube metal volume</td>
<td>22 ft3</td>
</tr>
<tr>
<td>Tube metal mass</td>
<td>12,203 lb</td>
</tr>
</tbody>
</table>

Secondary salt (shell side)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary salt (tube side)</td>
<td>Secondary salt (shell side)</td>
</tr>
<tr>
<td>Volume</td>
<td>57 ft3</td>
</tr>
<tr>
<td>Mass</td>
<td>11,870 lb</td>
</tr>
<tr>
<td>Velocity</td>
<td>10.4 ft/sec</td>
</tr>
<tr>
<td>Transit time</td>
<td>1.80 sec</td>
</tr>
</tbody>
</table>
hence only the conservation of energy is considered for the secondary salt. The equations, written in one space dimension, \(x \), (the direction of water flow) and time, \(t \), are as follows:

Conservation of mass (water)

\[
\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (pv) = 0 ;
\]

Conservation of momentum (water)

\[
\frac{\partial (pv)}{\partial t} + \frac{\partial}{\partial x} (pv^2) = -\frac{k_2 p}{\partial x} - cv^2 ;
\]

Conservation of energy (water)

\[
\frac{\partial}{\partial t} (ph) + \frac{\partial}{\partial x} (phv) = k_1 H(\theta - T) ;
\]

Conservation of energy (salt)

\[
\frac{\partial \theta}{\partial t} + V_s \frac{\partial \theta}{\partial x} = \frac{Hk_2}{\rho_s c_p} (T - \theta) .
\]

The equations of state for water:

\[
T = T(p, h) ; \\
\rho = \rho(p, h) .
\]

The definitions of the variables used in the above equations are as follows:

\(T \) = water temperature, \(^{\circ}\text{F},\)

\(\rho \) = water density, \(\text{lb/ft}^3 \),
\(v \) = water velocity, ft/sec,
\(p \) = water pressure, lb/in \(^2\),
\(c \) = coefficient of friction,
\(k \) = constant used to make units consistent,
\(h \) = specific enthalpy of water, Btu/lb,
\(H \) = heat transfer coefficient, salt to water, Btu/sec-ft\(^2\)-\(^\circ \)F,
\(k_1 \) = ratio of the surface area of a tube to the water volume in the tube, ft\(^{-1}\),
\(k_2 \) = ratio of the surface area of a tube to the salt volume adjacent to the tube, ft\(^{-1}\),
\(\rho_s \) = salt density (assumed constant), lb/ft\(^3\),
\(c_P \) = specific heat of salt at constant pressure, Btu/lb-\(^\circ \)F (assumed constant),
\(\theta \) = salt temperature, \(^\circ \)F,
\(V_s \) = salt velocity, ft/sec.

It was determined in previous work\(^2\) that a continuous-space, discrete-time model is most satisfactory for this steam generator simulation. By a judicious choice of the direction of integration in space, of the various dependent variables, an initial value problem can be formed. Since the water enthalpy, \(h \), and the water pressure, \(P \), are known at the water entrance end of the exchanger (left end), these variables will be integrated from left to right. For the same reason, the water velocity (it can be calculated at the throttle) and the salt temperature will be integrated from right to left.

The critical flow at the throttle is expressed by the following nonlinear relationship among the system variables at a point just before the throttle:
\[\rho v = M \left(\frac{A_T}{A_{T,0}} \right) \left(\frac{P}{1 + b_T} \right) \]

where \(A_T \) is the instantaneous value of the throttle opening, \(A_{T,0} \) the initial steady state value, \(M \) the critical flow constant, and \(b \) an empirical constant (assumed to be equal to 0 in this simulation).

\(A_{T,0} \) is taken as 1.0 and \(A_T \) is varied as a function of time during transients.

By simplification of Eqs. (1), (2), (3), and (4), and using the backwards differencing scheme for the time derivative, the following ordinary differential equations are generated.

\[
\frac{dp}{dx} = -\frac{\rho v}{k} \frac{dv}{dx} - \frac{cv^2}{k} - \frac{\rho}{k} \frac{v - v_k}{\Delta t} ;
\]

\[
\frac{dh}{dx} = \frac{1}{\rho v} [k_1 H(\theta - T)] - \frac{h - h_k}{v \Delta t} ;
\]

\[
\frac{dv}{dx} = -\frac{\nu}{\rho} \frac{dp}{dx} - \frac{\rho}{\rho_k} \frac{\rho - \rho_k}{\rho \Delta t} ;
\]

\[
\frac{d\theta}{dx} = + \frac{Hk_2 (T - \theta)}{\rho_s c_p v_s} - \frac{\theta - \theta_k}{v_s \Delta t} .
\]

In the above equations, the nonsubscripted variables are the ones being iterated for the values at the end of the \((k + 1)\) time increment, while the variables with the \(k \) subscripts represent their values at the end of the \(k \)th time increment. The time increment is represented by \(\Delta t \).
Since the v and θ equations are being integrated from right to left, they must be transformed using a different space variable. Let $y = L - x$, where L is the total length of the steam generator in the x direction. The new v and θ equations become:

$$\frac{dv}{dy} = \frac{v(y)}{\rho} \frac{dp}{dy} + \frac{\rho - \rho_k}{\rho \Delta t};$$

$$\frac{d\theta}{dy} = \frac{H_k}{\rho c \rho_s V_s(y)} \left(\frac{T - \theta}{V_s(y) \Delta t} - \frac{\theta - \theta_k}{\rho s V_s(y) \Delta t} \right).$$

In the hybrid program developed from the above equations, the integrations are performed on the AD-4 analog computer. The digital computer calculates the terms of the differential equations, provides control for the calculation, and provides storage. The AD-4 patchable logic is used in the problem control circuitry as communication linkages between the digital computer and the AD-4 analog computer. The patchable logic, along with BCD counters, is also used for problem timing and time synchronization between the digital computer and the AD-4 analog computer.

The thermodynamic properties of water are stored in the digital computer as two-dimensional tables. An interpolation routine is used to develop values from the numbers in the tables.

The calculational procedure for a time step, Δt, is as follows:

The current values of the water temperature, T, and water pressure, p, at the water entrance end (left end) of the steam generator are read and stored in the digital computer. The current value of the secondary salt temperature, θ, at the salt entrance
end (right end) of the steam generator is read from the continuous time analog model and is stored in the digital computer. The secondary salt velocity, \(V_s \), and the throttle valve position, \(A_T \), are also read from the continuous time analog model and their values are stored in the digital computer.

The terms of the \(dh/dx \) and \(dp/dx \) equations are calculated by the digital computer, using the values of the variables at the left end of the steam generator. The values of these terms as well as the values of the initial conditions of \(h \) and \(p \) are set on the coefficient devices representing them on the AD-4 analog computer. This coefficient device setting is implemented by a command from the digital computer. Upon a command from the digital computer, the \(h \) and \(p \) integrators on the AD-4 computer start integrating in \(x \). While the integration is proceeding, the digital computer is calculating the differential equation terms for the next space node (a space node is 1 foot long). When the digital calculations have been completed, the digital computer interrogates the AD-4 computer, through the patchable logic, as to whether or not its integrations have reached the end of the node. Upon getting an affirmative answer, the digital computer reads and stores the values of \(p \) and \(h \) from their integrators on the AD-4 computer. These integrators are in the hold mode at this time, having been placed in this mode by a logic signal from a BCD counter signifying that the end of a node has been reached. The digital computer sets the coefficient devices to their newly calculated values and starts the integrators to integrating over the next node. This procedure is repeated for each spatial node until the right-hand end of the steam generator is reached.

With a procedure identical to that above, and with the current values of \(p \) and \(h \), the salt temperature and water velocity differential equations are integrated from right to left. When the right to left integrations have proceeded to the left boundary, they are halted.
The left to right integration of \(p \) and \(h \) is repeated, using the current values of \(p \), \(h \), \(v \), and \(\theta \). The right to left integration of \(v \) and \(\theta \) is repeated, etc., until the convergence is satisfactory.

In actuality, the convergence was experimentally determined to be satisfactory after five iterations and this number was used in the program. A definite number of iterations is dictated by the fact that time synchronization must be maintained between the discrete time steam generator model and the continuous time model of the remainder of the system.

The time allotted for a time step, \(\Delta t \), is set on a BCD counter such that the counter will give out a logic signal signifying the end of the time step.

At the end of the fifth iteration, the digital computer starts interrogating the AD-4 computer to see if the allotted \(\Delta t \) time has elapsed. When the digital computer gets an affirmative answer, it reads and stores the current values of the appropriate variables from the continuous time model and another time step calculation is started. Of course, this procedure is repeated for as long as the simulation is in operation.

It was experimentally determined that the calculational stability was not good for time steps very much less than 0.5 sec. As a consequence, a \(\Delta t \) of 0.5 sec was used.

It was also experimentally determined that the completion of five iterations required in excess of 8 sec. As a result, 10 sec of computer time was made the equivalent of 0.5 sec of real system time. The continuous time model was time scaled accordingly (machine time = 20 times real system time). The sampling rate of the continuous time model was, therefore, once each 10 sec. This means that the values of variables generated in the continuous
time model and used in the discrete time steam generator model are sampled once each 10 sec of machine time, which corresponds to 0.5 sec in real system time. In a like manner, the variables generated in the discrete time steam generator model and used in the continuous time model of the remainder of the system are updated once each 10 sec in machine time.

The Fortran source program for the digital portion of the simulation is included as Appendix B. The AD-4 analog and patchable logic circuits are shown in Fig. 2.

4.2 The Analog Computer Model of the System
Exclusive of the Steam Generator

The computer model of the reactor, primary heat exchanger, piping, etc., is a continuous time, lumped parameter, model similar to those traditionally used on analog computers. The heat flow model is shown in Fig. 3.

4.2.1 The Nuclear Kinetics Model

Experience has shown that for the rather mild transients for which this model is intended, a two-delay-group nuclear kinetics model is adequate. That this is a circulating fuel reactor adds to the complication of the model.

The nuclear kinetics equations are as follows:

\[
\frac{dP}{dt} = \frac{(P - P_0)}{\Lambda} P + \lambda_1 C_1 + \lambda_2 C_2 ;
\]

\[
\frac{dC_1}{dt} = \frac{P_1}{\Lambda} P - \lambda_1 C_1 - \frac{C_1}{\tau_c} + e^{-\lambda_1 \tau_1} C_1(t - \tau_1) ;
\]
Fig. 2. Lumped-Parameter Model of MSBR Core and Heat Exchanger.
Fig. 3. Patching Schematics for the AD-4 Computer.
Fig. 3. Patching Schematics for the AD-4 Computer.
\[
\frac{dC_2}{dt} = \frac{\beta_2}{\Lambda} P - \lambda_2 C_2 - \frac{C_2}{\tau_c} + \frac{\lambda_2 \tau_1}{\tau_c} C_2(t - \tau_1);
\] \(9\)

where

\(P\) = the nuclear power level,
\(\rho\) = reactivity,
\(\beta\) = total delayed neutron fraction,
\(\Lambda\) = mean neutron lifetime,
\(\lambda_1\) = decay constant for delayed neutron group No. 1,
\(C_1\) = delayed neutron precursor concentration of group No. 1,
\(\lambda_2\) = decay constant for delayed neutron group No. 2,
\(C_2\) = delayed neutron precursor concentration of group No. 2,
\(\beta_1\) = delayed neutron fraction for group No. 1,
\(\beta_2\) = delayed neutron fraction for group No. 2,
\(\tau_c\) = reactor core resident time of the circulating fuel,
\(\tau_1\) = resident time of the circulating fuel in the loop external to the core.

In the model, the fuel salt flow rate is assumed constant; therefore, \(\tau_c\) and \(\tau_1\)
are constants.

The development of the computer model of the reactor kinetics from the above equations is shown in some detail in Appendix A.
4.2.2 The Reactor Core Heat Transfer Model

In the simulation model, core zone 1 contains two graphite lumps, and core zone 2 contains one graphite lump. There are two fuel salt lumps adjacent to each graphite lump. The outlet temperature of the first adjacent fuel salt lump (in the direction of salt flow) is used as the average fuel salt temperature in the equations describing the heat transfer between a graphite lump and the fuel salt lumps adjacent to it.

The typical heat balance equation for core graphite heat generation and heat transfer is as follows:

\[
M_{gi}C_{pg} \frac{dT_{gi}}{dt} = h_{fg}A_{gi}(T_{fi} - T_{gi}) + K_{gi}P,
\]

where

- \(M_{gi} \) = the mass of graphite in the \(i^{th} \) lump, lb,
- \(C_{pg} \) = graphite heat capacity, Btu/lb\(^\circ\)F,
- \(T_{gi} \) = the average graphite temperature in the \(i^{th} \) graphite lump, \(^\circ\)F,
- \(h_{fg} \) = the overall heat transfer coefficient between the graphite and the fuel salt, Btu/ft\(^2\)\(^\circ\)F-sec,
- \(A_{gi} \) = the heat transfer area between the graphite in the \(i^{th} \) lump and the fuel adjacent to it, ft\(^2\),
- \(T_{fi} \) = the average temperature of the fuel salt adjacent to the graphite in the \(i^{th} \) graphite lump, \(^\circ\)F,
- \(K_{gi} \) = the fraction of total fission power that is produced in the \(i^{th} \) graphite lump,
- \(P \) = total fission power produced by the reactor, Btu/sec.

The typical heat balance equations for the generation and transfer of heat in the core fuel adjacent to the \(i^{th} \) graphite lump are:
\[M_{fi} C_{pf} \frac{dT_{fi}}{dt} = F_{i} C_{pf} (T_{fi, in} - \bar{T}_{fi}) + h_{fg} A_{fi} (T_{gi} - \bar{T}_{fi}) + K_{fi} P, \]

and

\[M_{fi} C_{pf} \frac{dT_{foi}}{dt} = F_{i} C_{pf} (\bar{T}_{fi} - T_{foi}) + h_{fg} A_{fi} (T_{gi} - \bar{T}_{fi}) + K_{fi} P, \]

where

- \(M_{fi} \) = one-half the mass of the fuel salt adjacent to the graphite in the \(i^{th} \) graphite lump, lb,
- \(C_{pf} \) = fuel salt heat capacity, Btu/lb·°F,
- \(F_{i} \) = fuel salt mass flow rate adjacent to the \(i^{th} \) graphite lump, lb/sec,
- \(T_{fi, in} \) = the fuel salt temperature as it enters the \(i^{th} \) graphite lump, °F,
- \(A_{fi} \) = one-half the heat transfer area of the \(i^{th} \) graphite lump, ft²,
- \(K_{fi} \) = one-half the fraction of the total fission power that is generated in the fuel salt adjacent to the \(i^{th} \) graphite lump,
- \(T_{foi} \) = the fuel salt temperature at the salt discharge end of the \(i^{th} \) graphite lump, °F.

The detailed development of these equations into the time and magnitude scaled computer equations is shown in Appendix A.

4.2.3 Piping Lag Equations

The piping lags between the reactor core and the primary heat exchanger shall be considered the same in both directions. They will be treated as first order lags, implying perfect mixing. The resulting equations are as follows:
\[
\frac{dT_{xin}}{dt} = \frac{1}{\tau_x} (T_{RO} - T_{xin}),
\]

and

\[
\frac{dT_{fin}}{dt} = \frac{1}{\tau_x} (T_{f10} - T_{fin}),
\]

where

\[T_{xin} = \text{fuel salt temperature at the primary heat exchanger inlet, } ^\circ\text{F},\]

\[\tau_x = \text{fuel salt residence time in piping between the reactor core and the primary heat exchanger, sec},\]

\[T_{RO} = \text{average fuel salt temperature at reactor core outlet, } ^\circ\text{F},\]

\[T_{fin} = \text{fuel salt temperature at reactor core inlet, } ^\circ\text{F},\]

\[T_{f10} = \text{fuel salt temperature at the primary heat exchanger outlet, } ^\circ\text{F}.\]

4.2.4 Primary Heat Exchanger Equations

For the simulation, the primary heat exchanger is broken up into two primary salt lumps, two tube metal lumps, and two secondary salt lumps. Each of the primary and secondary salt lumps is divided into two identical half lumps, and the outlet temperature of the first half lump is used as the average temperature in the heat transfer equations.

Since the secondary salt mass flow rate can be changed by changing the circulating pump speed, the heat transfer coefficient between the tube wall and the secondary salt will vary with salt mass flow rate. As an approximation, the heat transfer coefficient was considered to be proportional to the secondary salt mass flow rate raised to the 0.6 power.
The typical heat balance equations for the primary salt in the primary heat exchanger are as follows:

\[M_{fi}C_{pf} \frac{dT_{fi}}{dt} = F_x C_{pf} (T_f(i-1) - T_{fi}) + h_{fp} A_{fx} (T_{tj} - T_{fi}) \]

and

\[M_{f(i+1)}C_{pf} \frac{dT_{f(i+1)}}{dt} = F_x C_{pf} (T_f(i) - T_{f(i+1)}) + h_{fp} A_{fx} (T_{tj} - T_{fi}) \]

where

\[i = 7 \text{ when } j = 1, \text{ and } i = 9 \text{ when } j = 2, \]

\[M_{f(i)} = M_{f(i+1)} = \text{one-fourth the total primary salt mass in the primary heat exchanger, lb,} \]

\[C_{pf} = \text{the heat capacity of the primary salt, } \text{Btu/lb.} \cdot ^\circ \text{F,} \]

\[F_x = \text{primary salt mass flow rate in the primary heat exchanger, lb/sec,} \]

\[h_{fp} = \text{the overall heat transfer coefficient between the primary salt and the heat exchanger tube wall, } \text{Btu/ft}^2 \cdot \text{sec} \cdot ^\circ \text{F,} \]

\[A_{fx} = \text{one-fourth the total heat transfer area between the primary salt and the primary heat exchanger tubes, ft}^2, \]

\[T_{tj} = \text{the average temperature of the tube wall metal in the } j^{th} \text{ lump, } ^\circ \text{F.} \]

The heat balance equations for the primary heat exchanger tube metal are the following:
The heat balance equations for the secondary salt in the primary heat exchanger are the following:

\[M_c \frac{dT_{t1}}{dt} = h_{p} A_T (T_{t2} - T_{t1}) - h_{TC} A_{T} (T_{t1} - T_{C3}) \]

and

\[M_c \frac{dT_{t2}}{dt} = h_{p} A_T (T_{f9} - T_{t2}) - h_{TC} A_{T} (T_{t2} - T_{C1}) \]

where

- \(M_T \) = mass of tube metal in lump number one = one-half the total tube metal mass in the primary heat exchanger, lb,
- \(C_T \) = the heat capacity of the tube metal in the primary heat exchanger, Btu/lb\(^\circ\)F,
- \(T_{t1} \) = the average temperature of the tube metal in lump number one, \(^\circ\)F,
- \(A_T \) = the heat transfer area between the primary salt and the tube walls in any tube metal lump, ft\(^2\),
- \(h_{TC} \) = the overall heat transfer coefficient between the secondary salt and the tube walls in the primary heat exchanger, Btu/ft\(^2\)-sec\(^\circ\)F (this is a variable in the equation),
- \(T_{C3} \) = the secondary salt temperature at the outlet of secondary salt lump three, \(^\circ\)F.

The heat balance equations for the secondary salt in the primary heat exchanger are the following:

\[M_c \frac{dT_{c1}}{dt} = F_c c_p (T_{cin} - T_{c1}) + h_{Tc} A_c (T_{f2} - T_{c1}) \]
\[\frac{dT_{c2}}{dt} = \frac{MC}{C_{pc}} \left[(T_{c1} - T_{c2}) + h_{Tc} A_{c} (T_{c1} - T_{c2}) \right] ; \]

\[\frac{dT_{c3}}{dt} = \frac{MC}{C_{pc}} \left[(T_{c2} - T_{c3}) + h_{Tc} A_{c} (T_{c2} - T_{c3}) \right] ; \]

and

\[\frac{dT_{c4}}{dt} = \frac{MC}{C_{pc}} \left[(T_{c3} - T_{c4}) + h_{Tc} A_{c} (T_{c3} - T_{c4}) \right] ; \]

where

- \(M_c \) = one-fourth the total secondary salt mass in the primary heat exchanger, lb,
- \(C_{pc} \) = the heat capacity of the secondary salt, Btu/lb\(\cdot\)°F,
- \(T_{ci} \) = the temperature of the secondary salt at the outlet of the \(i \)th secondary salt lump, °F,
- \(F_c \) = the mass flow rate of the secondary salt in the primary heat exchanger, lb/sec (this is a variable),
- \(T_{cin} \) = the secondary salt temperature as it enters the primary heat exchanger, °F,
- \(A_c \) = one-fourth the total heat transfer area between the secondary salt and the primary heat exchanger tubes, ft\(^2\),
- \(h_{Tc} \) = the overall heat transfer coefficient between the metal tubes and the secondary salt in the primary heat exchanger (this is a variable and proportional to the secondary salt mass flow rate raised to the 0.6 power).
The heat balance equations for the secondary salt in the primary heat exchanger are as follows:

\[M_{ci}C_{pc} \frac{dT_{ci}}{dt} = F_c C_{pc} [T_{ci(i-1)} - T_{ci}] + h_{Tc} A_c (T_j - T_{ci}) \]

and

\[M_{ci}C_{pc} \frac{dT_{c(i+1)}}{dt} = F_c C_{pc} [T_{ci} - T_{c(i+1)}] + h_{Tc} A_c (T_j - T_{ci}) \]

where

\[i = 1 \text{ when } j = 2, \text{ and } i = 3 \text{ when } j = 1, \]

\[M_{ci} \] = one-fourth the secondary salt mass in the primary heat exchanger, lb,

\[C_{pc} \] = the heat capacity of the secondary salt, Btu/lb\(^\circ\)F,

\[F_c \] = secondary salt mass flow rate in the primary heat exchanger, lb/sec (this is a variable in the simulation),

\[T_{ci} \] = average secondary salt temperature in the \(i^{th} \) lump, \(^\circ\)F,

\[A_c \] = one-fourth the total heat transfer area between the secondary salt and the tube walls in the primary heat exchanger, ft\(^2\).

The development of the computer equations for the primary heat exchanger is shown in Appendix A.

The patching diagram for the old analog computer is shown in Fig. 4.
Fig. 4. Patching Schematics for the Old Analog Computer.
4.2.5 System Controllers

Probably the most important thing to be considered in the automatic control of the system is that of avoiding freezing of the primary or secondary salt. Of course, the steam conditions at the turbine throttle must also be closely controlled. Previous studies have shown that it is impossible to realize both of the above objectives without adding auxiliary devices to the system. Two possible solutions have been suggested. One is to add a secondary salt bypass line and mixing valve around the primary heat exchanger so that a controlled portion of the secondary salt can be bypassed while the steam temperature at the throttle is controlled. The other proposed scheme is to use the salt system as it is and to allow the steam temperature to change freely in the steam generator and then attemperate it to the desired temperature for the turbine.

In this simulation, the steam attemperation scheme was assumed.

Three controllers were incorporated into the simulation.

4.2.5.1 Reactor Outlet Temperature Controller

This controller was essentially the same as that described by W. H. Sides, Jr., in ORNL-TM-3102. The reactor outlet temperature set point, \(T_{ro \ SET} \), was proportional to the plant load demand. The set point equation was the following:

\[
T_{ro \ SET} = 250 P_{\text{demand}} + 1050,
\]

where \(P_{\text{demand}} \) is the fraction of full load demand.

Since the scaled variables are \(P_s \) and \(T_{ros} \), where \(P_s = 0.08P \) and \(T_{ros} = \frac{1}{20} T_{ro} \), the scaled equation is:
The reactor power level set point was proportional to the difference between the outlet temperature set point and the measured reactor inlet temperature. The scaled equation is as follows:

\[P_{s \text{ SET}} = 6.4(T_{\text{ros SET}} - T_{\text{fins}}) \]

A reactor power level error was obtained by taking the difference between the power set point value and the measured value (from neutron flux). The resulting equation is

\[\epsilon = P_s - P_{s \text{ SET}} \]

This power level error, \(\epsilon \), was the input signal to a control rod servo described by the second order transfer function:

\[T(S) = \frac{G\omega^2}{S^2 + 2\omega S + \omega^2} = \frac{0(S)}{\epsilon(S)} \]

where \(G \) is the controller gain, \(\omega \) is the bandwidth, \(S \) is the damping factor, and \(0(S) \) is the Laplace transform of the servo output, \(\frac{dp_c}{dt} \).

In this simulation, the bandwidth was 5 Hz and the damping factor was 0.5. The gain of the controller, \(G \), was such that for \(|\epsilon| = 1\% \) of full power, the control rod reactivity change rate was about 0.01%/sec; that is,
\[\frac{dp}{dt} = 0.01\%/\text{sec} , \]

where \(p_c \) is the control reactivity.

For power level errors in excess of 1\% of full power, the rate of change of reactivity was limited to 0.01\%/sec.

4.2.5.2 Secondary Salt Flow Controller

The secondary salt flow rate controller forced the flow rate to follow the load demand in a programmed manner. The programmed flow rate is that required to prevent the salt systems from approaching their respective freezing points. The program was deduced from a series of steady state calculations performed by W. H. Sides, Jr.\(^4\)

Since, in the simulation, we are assuming that the salt density is constant, a change in the salt velocity is equivalent to a change in the salt flow rate. The programmed equation is

\[\text{velocity fraction} = 0.875 \times \text{load fraction} + 0.125 . \]

In the simulation, a velocity fraction of one is equal to 80 volts and a load fraction of one is also equal to 80 volts. The equation becomes:

\[\text{velocity fraction} = 0.875 \times \text{load fraction} + 10.0 . \]

4.2.5.3 Steam Pressure Controller

The steam pressure controller was used to control the steam pressure at the turbine throttle. The pressure sensor was assigned a time lag with a time constant of 0.1 sec. The pressure was changed by changing the speed of the feedwater pump.
The simple proportional controller equation is

\[G_p (P_{SET} - P_r) = \frac{dP}{dt} \]

The gain, \(G_p \), was such that a pressure error of 1% of design point pressure would cause the inlet pressure to be changed at a rate of 3.6 psi/sec.

The controllers were simulated on the old analog computer. The wiring schematics are shown in Fig. 5.
Fig. 5. Patching Schematics for the Simulation of the System Controllers.
5. RESULTS OF SIMULATION EXERCISES

The severity of the transients that can be run on this simulation model is somewhat limited by the nature of the steam generator model (the calculational time step is 0.5 sec).

The transients were run in order to determine the system response times, the rates of change of temperatures, and whether the salt temperatures approached the freezing points.

The conditions and results for the transients that were run were as follows:

1. Steady State Part Loads

The purpose of these computer runs was to determine the values of the system variables when operating at various fractions of full load. The system controllers were in operation as the load demand was changed from one level to another.

The load demand was changed by changing the turbine throttle opening. The area of the throttle opening was changed in increments of 10% of design point throttle area. The range of throttle openings covered was from the design point opening down to 30% of design point opening. The percentage of throttle area turned out to be very nearly the same as the percentage of load for each case.

Probably the thing of most interest was whether either the primary or secondary salt approached its respective freezing point for these part load operations. The results of interest are shown in Fig. 6.

It is evident that the temperatures in both salt systems are well above their respective freezing points (930°F for the primary salt and 725°F for the secondary salt).
Fig. 6. Temperatures in the MSBR System for Part Load Operation.
2. Rapid Change in Load Demand

A number of fast changes in load demand were run in order to observe the resulting system response. The rates of change of the system temperatures were of interest. The secondary salt temperature at the steam generator outlet changed at a rate of approximately 4.5°F/sec for the case when the load demand was ramped from full load to 40% full load in 1-2/3 sec. The results of the case where the load demand was ramped from 100% to 40% in 3 sec are shown in Fig. 7.

3. Changes in Secondary Salt Flow Rate

In order to observe the system response to a change in secondary salt flow rate, the secondary salt flow rate was reduced from full flow to 75% of full flow on a 5-sec ramp. The results are shown in Fig. 8.

4. Step Changes in Nuclear Fission Power Level

Step increases and decreases in nuclear fission power were implemented in order to observe the system response to same. The system response to a step change in nuclear fission power from full power to 75% power is shown in Fig. 9.

5. Changes in Reactivity

As a rough approximation of inserting two safety rods (each worth -1.5% in δk/k), -3% δk/k was ramped in in 15 sec. The results are shown in Fig. 10.

As a rough approximation of a fuel addition accident, +0.2% δk/k was ramped in in 1.5 sec. The results are shown in Fig. 11.
Fig. 7. System Response to a Ramp Change in Load Demand from 100 to 40% in 3 sec.
Fig. 8. System Response to a Ramp Change in Secondary Salt Flow Rate from 100 to 75% in 5 sec.
Fig. 9. System Response to a Step Change in Nuclear Fission Power from 100 to 75%.
Fig. 10. System Response to Insertion of Two Safety Rods.
Fig. 11. System Response to a Ramp addition of 0.2% δk/k in 1.5 sec.
6. Uncontrolled Increasing Load Demand

An uncontrolled load demand accident was simulated by increasing the load demand from 30% load to full load at a rate of 40% full load per minute (ten times normal rate).

The results are shown in Fig. 12.
Fig. 12. System Response to a Ramp Change in Load Demand from 30 to 100% Load at a Rate of 40% of Full Load per min.
References

7. APPENDIX

7.1 A: Development of Computer Model

7.1.1 The All-Analog Model

The all-analog model represents the nuclear reactor, the primary heat exchanger, and the interconnecting piping. The primary, or fuel, salt flows at a constant rate; and the secondary, or coolant, salt flows at a variable rate. The heat transfer coefficient between the primary heat exchanger tubes and the secondary salt was considered to be proportional to the secondary salt mass flow rate raised to the .6 power. The piping time lag for the primary salt between the reactor and the primary heat exchanger is 2.124 sec. The same time lag was used for the return flow to the reactor.

The reactor kinetics model has two weighted groups of delayed neutrons.³

7.1.1.1 Nuclear Kinetics Model

\[
\frac{dP}{dt} = \frac{(\alpha - \beta)}{\Lambda} P + \lambda_1 C_1 + \lambda_2 C_2 ;
\]

\[
\frac{dC_1}{dt} = \frac{\beta_1}{\Lambda} P - \lambda_1 C_1 - \frac{C_1}{\tau_c} + \frac{-\lambda_1 \tau_1}{\tau_c} C_1(t - \tau_1) ;
\]

\[
\frac{dC_2}{dt} = \frac{\beta_2}{\Lambda} P - \lambda_2 C_2 - \frac{C_2}{\tau_c} + \frac{-\lambda_2 \tau_1}{\tau_c} C_2(t - \tau_1) .
\]
Using the values listed in Tables 1 and 2 and Fig. 1, the above equations become:

\[
\frac{dP}{dt} = \frac{\rho}{0.00036} P - \frac{0.00264}{0.00036} P + 0.02446 C_1 + 0.2245 C_2 ;
\]

\[
\frac{dP}{dt} = 2.777 \times 10^3 \rho P - 7.333 P + 0.02446 C_1 + 0.2245 C_2 ;
\]

\[
\frac{dC_1}{dt} = \frac{0.00102}{0.00036} P - 0.02446 C_1 - \frac{1}{3.57} C_1 + \frac{e^{-0.02446(6.05)}}{3.57} C_1(t - \tau_1) ;
\]

\[
\frac{dC_1}{dt} = 2.8333P - 0.30456 C_1 + 0.2416 C_1(t - \tau_1) ;
\]

\[
\frac{dC_2}{dt} = \frac{0.00162}{0.00036} P - 0.2245 C_2 - \frac{1}{3.57} C_2 + \frac{e^{-(0.2245)(6.05)}}{3.57} C_2(t - \tau_1) ;
\]

\[
\frac{dC_2}{dt} = 4.5P - 0.50455 C_2 + 0.07204 C_2(t - \tau_1) .
\]

Use $P = 1000 \text{ MW(e)}$ at steady state, design point and calculate the design point values for C_1 and C_2. At steady state, design point:

\[
\frac{dC_1}{dt} = 0 = 2.8333(1000) - 0.30456 C_1(0) + 0.2416 C_1(0) ,
\]

since, at steady state, $C_1(0) = C_1(t - \tau_1)(0)$.

\[
C_1(0) = 45,000 \text{ MW} .
\]
Likewise:

\[
\frac{dC_2}{dt} = 0 = 4.5(1000) - 0.50455C_2(0) + 0.07204C_2(0) ;
\]

\[C_2(0) = 10,404 \text{ MW} .\]

Since we do not expect to use the model to go to power levels very much exceeding
1000 MW(e), we shall use the calculated values of \(C_1(0) \) and \(C_2(0) \) as indicators for
purposes of magnitude scaling \(C_1 \) and \(C_2 \). Let

\[C_{1(\text{max.})} = 1 \times 10^5 \text{ MW} ,\]

\[C_{2(\text{max.})} = 2 \times 10^4 \text{ MW} ,\]

and

\[P_{(\text{max.})} = 1250 \text{ MW} .\]

The corresponding machine variables are \((10^{-3}C_1)\), \((5 \times 10^{-3}C_2)\), and \((0.08P)\) respectively.

Write the magnitude scaled nuclear kinetics equations with the time scale equal to
real system time. Let \(C_{1s} = 10^{-3}C_1 \), \(C_{2s} = 5 \times 10^{-3}C_2 \), and \(P_s = 0.08P \).

\[
\frac{dP_s}{dt} = 2.777 \times 10^3 p_s - 7.333P_s + (0.02446)(10^3)C_{1s} + \frac{(0.2245)(10^3)}{5}C_{2s} ;
\]

\[
\frac{dP_s}{dt} = 2.777 \times 10^3 p_s - 7.333P_s + 1.957C_{1s} + 3.592C_{2s} ;
\]
\[\frac{dC_{1s}}{dt} = (2.8333) \times 10^{-3} \cdot P_s - 0.30456C_{1s} + 0.2416 C_{1s}(t - \tau) ; \]
\[\frac{dC_{1s}}{dt} = 0.0354P_s - 0.30456C_{1s} + 0.2416C_{1s}(t - \tau) ; \]
\[\frac{dC_{2s}}{dt} = (4.5) \times 10^{-3} \cdot P_s - 0.5046C_{2s} + 0.07204C_{2s}(t - \tau) ; \]
\[\frac{dC_{2s}}{dt} = 0.2813P_s - 0.5046C_{2s} + 0.07204C_{2s}(t - \tau) . \]

Calculate \(\rho_o \), the reactivity required to offset the effect of the delayed neutrons lost in the loop external to the core, for design point steady state operation.

\[\frac{dP}{dt} = 0 = 2.777 \times 10^3 \rho_o(1000) - 7.333(1000) + 0.02446(45,000) \]
\[+ 0.2245(10,404) ; \]
\[\rho_o = 0.001403 . \]

Temperature Coefficients of Reactivity

There are two reactor core zones with vastly different power densities. Zone 1 produces 79% of the total fission power while zone 2 produces 15% of the total fission power. The remaining 6% of the fission power is produced in the annulus, plenums, etc. These are very low power density regions that are not included in the simulation model; therefore, their contributions to the temperature coefficient of reactivity are relatively unimportant and they will be ignored in the simulation. The average temperature to be used in
determining the effective reactivity change due to core temperature changes shall be a weighted average of the average temperatures of the various regions. As an approximation, the weighting factor for a given region shall be proportional to the fraction of total fission power produced in that region.

The equation for the fuel salt weighted average temperature, \(T_{f, \text{avg}} \), is as follows:

\[
T_{f, \text{avg}} = \frac{(T_{f1} + T_{f2})}{2} \cdot 0.79 + (T_{f3}) \cdot 0.15 ;
\]

\[
T_{f, \text{avg}, s} = (T_{f1s} + T_{f2s}) \cdot 0.395 + T_{f3s} \cdot 0.15 .
\]

The fuel salt weighted average temperature at design point, steady state, \(T_{f, \text{avg}}(0) \), is calculated as follows:

\[
T_{f, \text{avg}}(0) = \frac{(T_{f1s}(0) + T_{f2s}(0))}{2} \cdot 0.79 + (T_{f3s}(0)) \cdot 0.15 ;
\]

\[
= \frac{55.49 + 62.11}{2} \cdot 0.79 + (58.8) \cdot 0.15 ;
\]

\[
T_{f, \text{avg}}(0) = 929 + 176.4 = 1105.4^\circ F .
\]

The equation for calculating the reactivity change as a result of fuel salt temperature changes is as follows:

\[
\rho_f = [T_{f, \text{avg}} - T_{f, \text{avg}}(0)] \alpha_f ,
\]
where α_f = the temperature coefficient of reactivity for the fuel salt, \ldotpK/K)/°F.

$$\rho_f = (T_{f_{avg.}} - 1105.4)(-1.789 \times 10^{-5}) ;$$

$$\rho_f = (T_{f_{avg.}} - 55.27)(-1.789 \times 10^{-5})(20) ;$$

$$\rho_f = (T_{f_{avg.}} - 55.27)(-3.578 \times 10^{-4}) .$$

For the graphite:

$$T_{g_{avg.}}(0) = \left(\frac{T_{g1} + T_{g2}}{2} \right) (.79) + T_{g3}(.15) ;$$

$$T_{g_{avg.}}(0) = (T_{g1} + T_{g2})(.395) + 0.15T_{g3} ;$$

$$T_{g_{avg.}}(0) = (56.28 + 62.9)(.395) + 0.15(59.19) ;$$

$$T_{g_{avg.}}(0) = 47.08 + 8.88 = 55.96 .$$

$$\rho_g = [T_{g_{avg.}} - T_{g_{avg.}}(0)]\alpha_g ;$$

$$\rho_g = [T_{g_{avg.}} - T_{g_{avg.}}(0)]\alpha_g ;$$

$$\rho_g = (T_{g_{avg.}} - 55.96)(1.305555 \times 10^{-5})(20) ;$$

$$\rho_g = (T_{g_{avg.}} - 55.96)(2.611 \times 10^{-4}) .$$
The scaled equations are:

$$[10^4 \rho_f] = (T_{\text{avg.}, s} - 55.27)(-3.578) ;$$

$$[10^4 \rho_g] = (T_{\text{avg.}, s} - 55.96)(2.611) .$$

The chosen time scaling was such that 20 sec of computer time was equivalent to 1 sec of system time.

The resulting machine equations are the following:

$$\frac{dP_s}{dT} = \frac{2.777 \times 10^3}{20} \rho_0 \rho_s + \frac{2.777 \times 10^3}{20} \rho P_s - \frac{7.333}{20} P_s + \frac{1.957}{20} C_{1s} + \frac{3.592}{20} C_{2s} ,$$

where $\tau = 20t$.

$$\frac{dP}{dT} = 138.85 \rho_0 P_s + 138.85 \rho P_s - 0.3667 \rho P_s + 0.0979 C_{1s} + 0.1796 C_{2s} .$$

Likewise:

$$\frac{dC_{1s}}{dT} = 0.00177 \rho P_s - 0.0152 C_{1s} + 0.01208 C_{1s} (t - \tau_l) ;$$

$$\frac{dC_{2s}}{dT} = 0.014065 \rho P_s - 0.02523 C_{2s} + 0.0036 C_{2s} (t - \tau_l) .$$
7.1.1.2 The Reactor Core Heat Transfer Model

7.1.1.2.1 Graphite Heat Transfer Equations

\[\frac{dT_{g1}}{dt} = \frac{h_{fg}A_{g1}(T_{f1} - T_{g1})}{M_{g1}C_{pg}} + K_{g1}P, \]

where \(P \) is in Btu/sec.

\[1 \text{ MW}(t) = 948.6667 \text{ Btu/sec}. \]

Since the plant efficiency is such that 2250 MW(t) results in 1000 MW(e),

\[1 \text{ MW(e)} = 2.25 \text{ MW}(t) = 2.25(948.6667) \text{ Btu/sec} = 2134.5 \text{ Btu/sec}. \]

In the above equation, if we express \(P \) in terms of MW(e), we have:

\[\frac{dT_{g1}}{dt} = \frac{h_{fg}A_{g1}(T_{f1} - T_{g1})}{M_{g1}C_{pg}} + \frac{2134.5}{M_{g1}C_{pg}}K_{g1}P; \]

\[K_{g1} = 0.032933; \]

\[\frac{dT_{g1}}{dt} = \frac{(0.29583)(15,039)(2134.5)(0.032933)}{(106,106.5)(0.42)} \text{ Btu/sec}. \]

Let \(P_s = 0.08P \) and \(T_{i_s} = T_{i}/20 \).

\[\frac{dT_{g1s}}{dt} = 0.09983(T_{f1s} - T_{g1s}) + \frac{0.001577}{(20)(.08)} P_s; \]

\[\frac{dT_{g1s}}{dt} = 0.09983(T_{f1s} - T_{g1s}) + 0.000986P_s. \]
Let computer time, τ, equal $20t$.

\[\frac{dT_{gls}}{d\tau} = \frac{0.09983}{20} (T_{f1s} - T_{gls}) + \frac{0.000986}{20} P_s ; \]

\[\frac{dT_{gls}}{d\tau} = 0.00499 (T_{f1s} - T_{gls}) + 0.0000493 P_s . \]

In a like manner:

\[\frac{dT_{g2s}}{d\tau} = 0.00499 (T_{f2s} - T_{g2s}) + 0.0000493 P_s ; \]

\[\frac{dT_{g3s}}{d\tau} = 0.00861 (T_{f3s} - T_{g3s}) + 0.00004155 P_s . \]

7.1.1.2.2 Fuel Salt Equations Describing the Generation and Transfer of Heat in the Reactor Core

Core Zone 1.---

\[M_{f1} C_{pf} \frac{dT_{f1}}{dt} = F_1 C_{pf} (T_{f1} - T_{f1}) + h_{fg} A_{f1} (T_{g1} - T_{f1}) + K_{f1} P , \]

where

P is expressed in Btu/sec (thermal),

$M_{f1} = 1/4$ fuel mass in core zone 1 $= 58,074/4$ lb $= 14,518.5$ lb,

$F_1 =$ fuel salt mass flow rate in core zone 1 $= 58,074$ lb/2.71 sec $= 21,430$ lb/sec,

$A_{f1} = 1/4$ of core zone 1 heat transfer area $= 30,077/4$ ft2 $= 7519.25$ ft2,

$K_{f1} = 0.1781.$
\[
\frac{dT_{f1}}{dt} = \frac{21430}{14518.5} (T_{\text{fin}} - T_{f1}) + \frac{(0.29583)(7519.25)}{(14,518.5)(0.324)} (T_{g1} - T_{f1}) + \frac{(0.1781)(2134.5)}{(14,518.5)(0.324)} P,
\]

where \(P \) is expressed in MW(e).

The unscaled equation is:

\[
\frac{dT_{f1}}{dt} = 1.476(T_{\text{fin}} - T_{f1}) + 0.4729(T_{g1} - T_{f1}) + 0.080815P.
\]

Allowing temperature maximums of 2000°F and a power maximum of 1250 MW(e), we have magnitude scaled variables of \(T_{f1s} = T_{f1}/20 \) and \(P_s = .08P \).

\[
\frac{dT_{f1s}}{dt} = 1.476(T_{\text{fins}} - T_{f1s}) + 0.4729(T_{g1s} - T_{f1s}) + \frac{0.080815}{(20)(.08)} P_s.
\]

The magnitude scaled equation is:

\[
\frac{dT_{f1s}}{dt} = 1.476(T_{\text{fins}} - T_{f1s}) + 0.4729(T_{g1s} - T_{f1s}) + 0.0505P_s.
\]

Let machine time = twenty times real system time;

\[
\tau = 20t.
\]
The time and magnitude scaled equation is:

\[
\frac{d\bar{T}_{f1s}}{d\tau} = \frac{1.476}{20} (T_{fins} - \bar{T}_{f1s}) + \frac{0.4729}{20} (T_{g1s} - \bar{T}_{f1s}) + \frac{0.505}{20} P_s .
\]

The equations for the other three fuel salt lumps in core zone 1 are developed in a like manner and the resulting equations are as follows:

\[
\frac{d\bar{T}_{f01s}}{d\tau} = 0.0738(T_{f1s} - \bar{T}_{f01s}) + 0.0236(T_{g1s} - \bar{T}_{f1s}) + 0.002525P_s .
\]

\[
\frac{dT_{f01s}}{dt} = 1.476(T_{f01s} - T_{f01s}) + 0.4729(T_{g1s} - T_{f1s}) + 0.0564P_s ;
\]

\[
\frac{d\bar{T}_{f01s}}{d\tau} = 0.0738(T_{f1s} - \bar{T}_{f01s}) + 0.0236(T_{g1s} - \bar{T}_{f1s}) + 0.00282P_s ;
\]

\[
\frac{d\bar{T}_{f2s}}{d\tau} = \frac{1.476}{20} (T_{f01s} - \bar{T}_{f2s}) + \frac{0.4729}{20} (T_{g2s} - \bar{T}_{f2s}) + \frac{0.505}{20} P_s .
\]

\[
\frac{d\bar{T}_{f2s}}{d\tau} = 0.0738(T_{f01s} - \bar{T}_{f2s}) + 0.0236(T_{g2s} - \bar{T}_{f2s}) + 0.00282P_s ;
\]

\[
\frac{d\bar{T}_{f02s}}{d\tau} = 1.476(T_{f2s} - T_{f02s}) + 0.4729(T_{g2s} - \bar{T}_{f2s}) + 0.04863P_s ;
\]

\[
\frac{d\bar{T}_{f02s}}{d\tau} = 0.0738(T_{f2s} - \bar{T}_{f02s}) + 0.0236(T_{g2s} - \bar{T}_{f2s}) + 0.002432P_s .
\]
Core Zone 2, --

\[M_{f3} C_{pf} \frac{dT_{f3}}{dt} = F_{3} C_{pf} (T_{\text{fin}} - T_{f3}) + h_{fg} A_{f3} (T_{g3} - T_{f3}) + K_{f3} P , \]

where \(P \) is expressed in Btu/sec (thermal),

\[M_{f3} = \frac{1}{2} \text{fuel mass in core zone } 2 = \frac{1}{2} \times 61,428 \text{ lb} = 30,714 \text{ lb}, \]

\[F_{3} = \text{fuel salt mass flow rate in core zone } 2 = \frac{61,428 \text{ lb}}{12.5 \text{ sec}} = 4914.24 \text{ lb/sec}, \]

\[A_{f3} = \frac{1}{2} \text{heat transfer area in core zone } 2 = \frac{1}{2} \times 14206 \text{ ft}^2 = 7103 \text{ ft}^2, \]

\[K_{f3} = 0.0863. \]

\[\frac{dT_{f3}}{dt} = \frac{4914.24}{30,714} (T_{\text{fin}} - T_{f3}) + \frac{(0.29583)(7103)}{(30,714)(.324)} (T_{g3} - T_{f3}) + \frac{(0.0863)(2134.5)}{(30714)(.324)} P ; \]

\[\frac{dT_{f3}}{dt} = 0.1600(T_{\text{fin}} - T_{f3}) + 0.2112(T_{g3} - T_{f3}) + 0.01851P . \]

For the reason previously stated, use the magnitude scaled variables:

\[T_{is} = \frac{T_{i}}{20} \text{ and } P_{s} = .08P . \]

\[\frac{dT_{f3s}}{dt} = 0.1600(T_{\text{fins}} - T_{f3s}) + 0.2112(T_{g3s} - T_{f3s}) + \frac{0.01851}{(20)(.08)} P_{s} ; \]

\[\frac{dT_{f3s}}{dt} = 0.1600(T_{\text{fins}} - T_{f3s}) + 0.2112(T_{g3s} - T_{f3s}) + 0.01157P_{s} ; \]

\[\tau = 20t . \]
The equations for the second half of fuel lump number 3 were developed in a like manner. The resulting equations were as follows:

\[
\frac{dT_{f3s}}{dT} = \frac{0.1600}{20} (T_{fins} - \bar{T}_{f3s}) + \frac{0.2112}{20} (T_{g3s} - \bar{T}_{f3s}) + \frac{0.01157}{20} P_s ;
\]

\[
\frac{dT_{f3s}}{dT} = 0.0080(T_{fins} - \bar{T}_{f3s}) + 0.01056(T_{g3s} - \bar{T}_{f3s}) + 0.000579P_s .
\]

The temperature of the salt at the reactor core outlet can be calculated by weighting the outlet temperatures of the salt in zones 1 and 2 proportional to their respective mass flow rates.

\[
WF_1 = \text{weighting factor in zone 1}
\]

\[
= \frac{21,430 \text{ lb/sec}}{21,430 \text{ lb/sec} + 4914 \text{ lb/sec}} = \frac{21,430}{26,344} = 0.8135 .
\]

\[
WF_2 = \frac{4914 \text{ lb/sec}}{26,344 \text{ lb/sec}} = 0.1865 .
\]

Let \(T_{R0s} = T_{R0}/20 \) = magnitude scaled temperature of the fuel salt at the reactor core outlet.
The primary salt residence time in the piping between the reactor core and the primary heat exchanger inlet is 2.125 sec. The piping lag will be approximated by a first order lag, indicating perfect mixing. The first order lag equation is as follows:

\[
\frac{dT}{dt} = \frac{1}{2.125} (T_{RO} - T_{xin}) .
\]

The magnitude and time scaled equation is:

\[
\frac{dT_{xin}}{d\tau} = 0.0235(T_{ROs} - T_{xin}) .
\]

The residence time in the piping carrying the primary salt from the primary heat exchanger to the reactor was considered to be the same as that in the opposite direction; namely, 2.125 sec. The resulting first order lag equation is:

\[
\frac{dT_{fins}}{d\tau} = 0.0235(T_{f10s} - T_{fins}) .
\]
7.1.1.4 Primary Heat Exchanger Model

7.1.1.4.1 Primary Salt Equations

\[M_{f7}C_{pf}\frac{dT_{f7}}{dt} = F_xC_{pf}(T_{xin} - T_{f7}) + h_{fp}A_{fx}(T_{t1} - T_{f7}); \]

\[M_{f7} = M_{f8} = M_{f9} = M_{f10} = \frac{11870 \text{ lb}}{4} = 2967.5 \text{ lb}; \]

\[F_x = \frac{11,070 \text{ lb}}{1.8 \text{ sec}} = 6594 \text{ lb/sec}; \]

\[A_{fx} = \frac{11,050}{4} \text{ ft}^2 = 2762.5 \text{ ft}^2. \]

The resistance to heat flow from the tubes into the primary salt was considered to be the film resistance plus 1/2 the tube wall resistance.

Film resistance \(= \frac{1}{3500} \text{ Btu/hr-ft}^2\text{-°F} = 0.0002857 \frac{\text{hr-ft}^2\text{-°F}}{\text{Btu}}. \)

Tube wall resistance \(= \frac{1}{3963} \text{ Btu/hr-ft}^2\text{-°F} = 0.0002523 \frac{\text{hr-ft}^2\text{-°F}}{\text{Btu}}. \)

1/2 wall resistance \(= \frac{0.0002523}{2} = 0.0001262. \)

Total resistance, \(R_{TI} = 0.0004119. \)
\[h_{fp} = \frac{1}{R_{T_1}} \times \frac{1}{3600} = 0.67438 \text{ btu/sec-ft}^2\cdot{}^\circ\text{F}. \]

\[
\frac{dT_{f7}}{dt} = \frac{6594}{2967.5} (T_{xin} - T_{f7}) + \frac{(0.67438)(2762.5)}{(2967.5)(.324)} (T_{t1} - T_{f7}).
\]

Use scaled variables \(T_i/20 \).

Let \(T_{is} = T_i/20 \).

\[
\frac{dT_{f7s}}{dt} = 2.222(T_{xins} - T_{f7s}) + 1.938(T_{t1s} - T_{f7s}).
\]

The machine timed equation is:

\[
\frac{dT_{f7s}}{d\tau} = \frac{2.222}{20} (T_{xins} - T_{f7s}) + \frac{1.938}{20} (T_{t1s} - T_{f7s});
\]

\[
\frac{dT_{f7s}}{d\tau} = 0.111(T_{xins} - T_{f7s}) + 0.0969(T_{t1s} - T_{f7s}).
\]

The following equations are developed using the same approach:

\[
\frac{dT_{f8}}{dt} = 2.222(T_{f7} - T_{f8}) + 1.938(T_{t1} - T_{f7});
\]

\[
\frac{dT_{f8s}}{dt} = 2.222(T_{f7s} - T_{f8s}) + 1.938(T_{t1s} - T_{f7s});
\]
\[
\frac{dT_{t8s}}{dt} = 0.1111(T_{t7s} - T_{t8s}) + 0.0969(T_{t1s} - T_{t7s}) ;
\]
\[
\frac{dT_{t9s}}{dt} = 2.222(T_{t8s} - T_{t9s}) + 1.938(T_{t12s} - T_{t9s}) ;
\]
\[
\frac{dT_{t10s}}{dt} = 2.222(T_{t9s} - T_{t10s}) + 1.938(T_{t12s} - T_{t9s}) ;
\]
\[
\frac{dT_{t10s}}{dt} = 0.1111(T_{t9s} - T_{t10s}) + 0.0969(T_{t12s} - T_{t9s}) .
\]

7.1.1.4.2 Tube Wall Heat Transfer

\[
M_T C_T \frac{dT_{t1}}{dt} = h_{fT}(T_{f7} - T_{t1}) - h_{cT}(T_{t1} - T_{c3}) ;
\]
\[
M_T = \frac{16,020 \text{ lb}}{2} = 8,010 \text{ lb} .
\]
$C_T = 0.129 \text{ Btu/lb} \cdot \text{oF}$.

$h_{fp} = 0.67438$ (previous calculation).

$A_T = \frac{11,050 \text{ ft}^2}{2} = 5525 \text{ ft}^2$.

The resistance to heat flow from the tube walls to the secondary salt is comprised of the film resistance and one half the tube wall resistance.

Since the secondary salt flow rate is variable, h_{TC} will be variable also. In this model, h_{TC} is proportional to the secondary salt mass flow rate raised to the 0.6 power.

For design point, steady state conditions,

$$h_{TC} = h_{TC,0} = \frac{1}{\frac{1}{2130} + \frac{1}{3963 \times 2}} = \frac{1}{0.0004695 + 0.0001262} = \frac{1}{0.0005957}$$

$$= 1678.7 \text{ Btu/hr-ft}^2 \cdot \text{oF}$$

$$= 0.4663 \text{ Btu/sec-ft}^2 \cdot \text{oF}.$$

The variable used in the equations shall be $\left[0.8 \frac{h_{TC}}{h_{TC,0}} \right]$.

$$\frac{dT_{t1}}{dt} = \frac{(0.67438)(5525)}{(8010)(0.129)} (T_{f7} - T_{t1}) - \frac{(0.4663)(5525)}{(8010)(0.129)(0.8)} \left[0.8 \frac{h_{TC}}{h_{TC,0}} \right] (T_{t1} - T_{c3}) ;$$

$$\frac{dT_{t1}}{dt} = 3.606(T_{f7} - T_{t1}) - 3.1166 \left[0.8 \frac{h_{TC}}{h_{TC,0}} \right] (T_{t1} - T_{c3}) ;$$
\[
\begin{align*}
\frac{dT_{t1s}}{dt} &= 3.606(T_{f7s} - T_{t1s}) - 3.1166 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t1s} - T_{c3s}) ; \\
\frac{dT_{t1s}}{d\tau} &= 0.1803(T_{f7s} - T_{t1s}) - 0.1558 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t1s} - T_{c3s}) .
\end{align*}
\]

Similarly:

\[
\begin{align*}
\frac{dT_{t2}}{dt} &= 3.606(T_{f9} - T_{t2}) - 3.1166 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t2} - T_{c1}) ; \\
\frac{dT_{t2s}}{dt} &= 3.606(T_{f9s} - T_{t2s}) - 3.1166 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t2s} - T_{c1s}) ; \\
\frac{dT_{t2s}}{d\tau} &= 0.1803(T_{f9s} - T_{t2s}) - 0.1558 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t2s} - T_{c1s}) .
\end{align*}
\]

7.1.1.4.3 Secondary Salt Equations

\[
\begin{align*}
M_{c1} C_{pc} \frac{dT_{c1}}{dt} &= F_{c} C_{pc} (T_{cin} - T_{c1}) + h_{Tc} A_{c} (T_{f2} - T_{c1}) ; \\
M_{c1} &= \frac{34,428 \text{ lb}}{4} = 8607 \text{ lb} .
\end{align*}
\]

Since the secondary salt flow rate is a variable, \(F_{c} \) and \(h_{Tc} \) will be variables.

For steady state, design point conditions,
\[F_c = F_{c,0} = 1.78 \times 10^7 \text{ lb/hr} = 4944 \text{ lb/sec}, \]

and

\[h_{Tc} = h_{Tc,0} = 0.4663 \text{ Btu/sec-ft}^2\text{°F}. \]

\[A_c = \frac{11050 \text{ ft}^2}{4} = 2762.5 \text{ ft}^2. \]

The variables \[\frac{8}{F_{c,0}} \] and \[\frac{8}{h_{Tc,0}} \] shall be used in the model.

\[\frac{dT_{c1}}{dt} = \frac{F_{c,0}C_{pc}}{M_{c1}C_{pc}(0.8)} \left[\frac{8}{F_{c,0}} \right] (T_{cin} - T_{c1}) + \frac{h_{Tc,0}A_c}{M_{c1}C_{pc}(0.8)} \left[\frac{8}{h_{Tc,0}} \right] (T_{c2} - T_{c1}); \]

\[\frac{dT_{c1}}{dt} = \frac{(4944)}{(8607)(0.8)} \left[\frac{8}{F_{c,0}} \right] (T_{cin} - T_{c1}) + \frac{(0.4663)(2762.5)}{(8607)(0.360)(0.8)} \left[\frac{8}{h_{Tc,0}} \right] (T_{c2} - T_{c1}); \]

\[\frac{dT_{c1}}{dt} = 0.7180 \left[\frac{8}{F_{c,0}} \right] (T_{cin} - T_{c1}) + 0.5197 \left[\frac{8}{h_{Tc,0}} \right] (T_{c2} - T_{c1}); \]

\[\frac{dT_{c1s}}{dt} = 0.7180 \left[\frac{8}{F_{c,0}} \right] (T_{cins} - T_{c1s}) + 0.5197 \left[\frac{8}{h_{Tc,0}} \right] (T_{c2s} - T_{c1s}); \]
\[
\frac{dT_{c1s}}{dt} = 0.0359 \left[0.8 \frac{F_c}{F_{c,0}} \right] (T_{cins} - T_{c1s}) + 0.0253 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t2s} - T_{c1s}) .
\]

Similarly:

\[
\frac{dT_{c2}}{dt} = 0.7180 \left[0.8 \frac{F_c}{F_{c,0}} \right] (T_{c1} - T_{c2}) + 0.5197 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t2} - T_{c1}) ;
\]

\[
\frac{dT_{c2s}}{dt} = 0.7180 \left[0.8 \frac{F_c}{F_{c,0}} \right] (T_{c1s} - T_{c2s}) + 0.5197 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t2s} - T_{c1s}) ;
\]

\[
\frac{dT_{c2s}}{dt} = 0.0359 \left[0.8 \frac{F_c}{F_{c,0}} \right] (T_{c1s} - T_{c2s}) + 0.0253 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t2s} - T_{c1s}) ;
\]

\[
\frac{dT_{c3}}{dt} = 0.7180 \left[0.8 \frac{F_c}{F_{c,0}} \right] (T_{c2} - T_{c3}) + 0.5197 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t1} - T_{c3}) ;
\]

\[
\frac{dT_{c3s}}{dt} = 0.7180 \left[0.8 \frac{F_c}{F_{c,0}} \right] (T_{c2s} - T_{c3s}) + 0.5197 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t1s} - T_{c3s}) ;
\]

\[
\frac{dT_{c3s}}{dt} = 0.0359 \left[0.8 \frac{F_c}{F_{c,0}} \right] (T_{c2s} - T_{c3s}) + 0.0253 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t1s} - T_{c3s}) ;
\]

\[
\frac{dT_{c4}}{dt} = 0.7180 \left[0.8 \frac{F_c}{F_{c,0}} \right] (T_{c3} - T_{c4}) + 0.5197 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} \right] (T_{t1} - T_{c3}) ;
\]
\[
\frac{dT_{c4s}}{dt} = 0.7180 \left[0.8 \frac{F_c}{F_{c,0}} (T_{c3s} - T_{c4s}) + 0.5197 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} (T_{t1s} - T_{c3s}) \right] \right],
\]

\[
\frac{dT_{c4s}}{d\tau} = 0.0359 \left[0.8 \frac{F_c}{F_{c,0}} (T_{c3s} - T_{c4s}) + 0.0253 \left[0.8 \frac{h_{Tc}}{h_{Tc,0}} (T_{t1s} - T_{c3s}) \right] \right].
\]
7.2 B: Fortran Source Program for MSBR Steam Generator Simulation

7.2.1 Program

```fortran
C MSBR STEAM GENERATOR SIMULATION
DIMENSION THETA(100),V(100),T(100),P(100),WMU(100),CW(100),PR(100)
C
1,µ(100),D(100),RE(100),DK(100),THETAK(100),VK(100),C(100),HK(100)
DIMENSION IX(100)
DIMENSION PL(100),HL(100),VL(100),THETAL(100)
COMMON IR,IW
IR=2
IW=5
READ (IR,3000) N
3000 FORMAT(I5)
   CALL MSBR(N,THETA,V,T,P,WMU,CW,PR,H,D,RE,DK,THETAK,VK,C,HK,IX,PL,H
     VL,THETAL)
   CALL EXIT
END
SUBROUTINE MSBR(N,THETA,V,T,P,WMU,CW,PR,H,D,RE,DK,THETAK,VK,C,HK,IX,PL,H
     VL,THETAL)
COMMON IR,IW
DIMENSION IAR(2),IDV(7),IDV(4)
DIMENSION THETA(N),V(N),T(N),P(N),WMU(N),CW(N),PR(N),H(N),D(N),RE(
     N),DK(N),THETAK(N),VK(N),C(N),HK(N)
DIMENSION IX(N)
DIMENSION PL(N),HL(N),VL(N),THETAL(N)
DIMENSION TABH(30,6),TABD(120,6),TABT(120,6)
DIMENSION TABMU(18,2),TABK(18,2),TABPR(18,2)
DIMENSION IJB(3),IDH(3),IVTHET(2),IDH(2)
DIMENSION IOUTA(4),IOUTV(4)
   CALL INITA(IE,O)
   CALL INMUX(IE,O)
   CALL RUN(IE)
   READ(IR,300) IT
C N IS THE NO. OF ITERATIONS PER TIME STEP.
   READ(IR,300) N
300 FORMAT(I5)
   CALL TSCAL(IE,IT)
   READ(IR,105) DX,DT,PK,PKF
105 FORMAT(2F6.2,2F10.5)
   READ(IR,106) HSF,SPH
106 FORMAT(2F6.2)
   READ(IR,107) IMDAC,IADH
107 FORMAT(2I6)
   READ (IR,103) HK1,HK2,HK3,C0N1,RK1,THETLB,VLB
103 FORMAT(7F10.2)
   READ (IR,110) CPC0N,SVF,RK2,SVFS
110 FORMAT(3F10.2,F10.7)
   READ (IR,120) IADV
120 FORMAT(16)
   READ (IR,122) IRDAC,IMDAC1
122 FORMAT(2I6)
   READ IN TABLE VALUES.
C
*See Sect. 7.2.2 for definition of variables.*
READ(IR,101) TABD
READ(IR,101) TABT
101 FORMAT(10F8.2)
READ(IR,100) TABH
100 FORMAT(10F8.2)
READ(IR,104) TABMU
READ(IR,104) TABK
READ(IR,104) TABPR
104 FORMAT(10F8.2)
C READ IN TABLE LIMITS.
READ (IR,102) THMINH,TMAXH,DELTH,NTH,PMINH,PMAHX,DELPH,NPH
READ (IR,102) HMINH,HMAXH,HDELH,HND,PMIND,PMAXD,DELPD,NPD
READ (IR,102) THMINM,TMAXM,DELM,TNM,PMINM,PMAXM,DELMN,NPM
READ (IR,102) THMINK,TMAXK,DELTK,NTK,PMINK,PMAKX,DELPK,NPK
READ (IR,102) THMINP,TMAXP,DELPF,NTP,PMINP,PMAXP,DELPF,NPP
READ (IR,102) HMINH,HMA XT,DELT,TNT,PMINT,PMAXT,DELP,NNP
102 FORMAT(3F8.2,16,3F8.2,15)
C READ INITIAL GUESSES FOR VALUES OF VARIABLES.
READ(IR,108) H
108 FORMAT(10F8.1)
READ(IR,108) P
READ (IR,108) THETA
READ (IR,108) V
C SET UP ADDRESSES FOR OUTPUTTING VALUES OF VARIABLES
C FROM THE ANALOG COMPUTER.
READ(IR,109) IOUTA
109 FORMAT(416)
C INITIALIZE C0EPP. DEVICE SETTING ROUTINES.
CALL ADDR(IADH,IADHD)
CALL ADDR(IADV,IADVD)
CALL PREB(IADHD, IDH, 3)
CALL PREB2(IADHD, IDH1, 2)
CALL PREB3(IADVD, IDV, 7)
CALL PREB4(IADVD, IDV1, 4)
C PUT ANALOG COMPUTER LEFT TO RIGHT INTEGRATORS IN IC MODE.
CALL SETHD(O,0)
ALF=.5
C KT IS THE TIME STEP COUNT VARIABLE.
KT=0
C START TIME STEP TIMER AT NEXT P SIGNAL PIP.
2003 CALL SETHD(O,48)
KT=KT+1
C READ VALUES OF PLB, TLB, AND VS FROM ANALOG AMPLIFIERS.
CALL ADDR(6220, IAB1)
CALL SCANH(IAB1,ILB,3)
C HAS TIME STEP TIMER COUNTER STARTED COUNTING?
3005 IF(ITEST(IE,0,13)) 3005,3005,3006
3006 PLB=ILB(1)
TLB=ILB(2)*1.E-1
VS=ILB(3)*1.E-4
C READ THE THROTTLE SETTING AND THE SALT TEMP. AT THE RIGHT BOUNDARY.
C CALL ADDR(6262, IAB3)
CALL SCANH(IAB3, IAR, 2)
C CHECK TLB AND PLB AGAINST THE RANGE OF TABH.
IF(PLB.GE.PMINH.AND.PLB.LE.PMAHX.AND.TLB.GE.TMINH.AND.TLB.LE.TMAXH)
1) G0 T0 11
WRITE(IW,10)
10 FORMAT(IX,"EITHER PLB OR TLB, OR BOTH, IS OUT OF RANGE OF TABH.")
STOP THE PROGRAM
G0 TO 99
C GET VALUE OF H AT LEFT BOUNDARY, HLB, FROM H(P,T), TABH.
11 CALL TERP2(TABH,TLB,PLB,HLB,TMINH,TMAHX,DELT,NTH,PMINH,PMAHX,DELP
IH,NPH)
HLB=(HLB-1100)*25,
XY=HLB-.5
IDM(3)=IX(IY)
HI=HK2*VS**0.60
C GET DENSITY AT LEFT BOUNDARY, DLE, FROM P(H) TABLE, TABD.
IF(PLB.GE.PMIN.D.AND.PLB.LE.PMAX.D.AND.HLB.GE.HMIN.D.AND.HLB.LE.HMAX)

1) G0 T0 21
WRITE(IW,20)
20 FORMAT(1A,'EITHER PLB OR HLB, OR BOTH, IS OUT OF RANGE OF TABL.')
G0 T0 99
21 CALL TERP2(TABD,HLB,PLB,DLB,HMIN,HMAX,DELH,DH,PMIN,PMAX,DELPM)

C CHECK RANGE OF VISCOSITY TABLE, TABMU, AND GET VISCOSITY VALUE AT
C LEFT BOUNDARY, WMUBL.
IF(PLB.GE.PMIN.M.AND.PLB.LE.PMAX.M.AND.TLB.GE.TMINM.AND.TLB.LE.TMAXM)

1) G0 T0 31
WRITE(IW,30)
30 FORMAT(1A,'EITHER PLB OR TLB, OR BOTH, IS OUT OF RANGE OF TABMU.')
G0 T0 99
31 CALL TERP3(TABM,TLB,PLB,WMUBL,TMINM,TMAXM,DELTM,DLM,PMINM,PMAXM)

1LP,PMF)
IF(PLB.GE.PMIN.F.AND.PLB.LE.PMAX.F.AND.TLF.GE.TMINF.AND.TLF.LE.TMAXF)

1) G0 T0 51
WRITE(IW,40)
40 FORMAT(1A,'EITHER PLB OR TLB, OR BOTH, IS OUT OF RANGE OF TABF.')
G0 T0 99
51 CALL TERP3(TABF,TABF,TLB,PLB,CWLBL,PRLB,TMINF,TMAXF,DELTK,NFK,PMINF)

IK,PMAXF,DELPK,NPK)
C SAVE VALUES OF P,H,V, AND THETA FOR NEXT TIME STEP CALCULATION.
D0 331 IK=IK+1
PL(IX)=P(IK)
331 HL(IX)=H(IX)
D0 401 LL=LL+1,N
VL(LL)=V(LL)
401 THETA(IX)=THETA(LL)
C VI S ITERATION COUNT VARIABLE.
KI=O
C START ITERATION
1000 KI=KI+1
IF(KI-1)66,66,67
66 IF(KI-2)67,65,67
65 VLB=20.25
C CALCULATE THE REYNOLDS NO. AT THE LEFT BOUNDARY, RELB.
67 RELB=CN*DLB*VLB/WMUBL
C CALCULATE THE INSIDE FILM HEAT TRANSFER COEFFICIENT AT THE LEFT BOUNDARY.
C HLB
HLB=HK1*CWLB*RELB**0.923*PRLB**0.613
C CALCULATE THE OVERALL HEAT TRANSFER COEFFICIENT AT THE LEFT BOUNDARY.
HTCLB=HLB*HK**0.613*(HLB*HK**0.613+HLB**0.613)
C CALCULATE THE COMPONENTS OF THE DERIVATIVE OF ENTHALPY AT THE LEFT BOUNDARY.
C RY, DHILB AND DH2ILB.
IF(KI-1)77,75,77
75 PHLB=HLB
77 DHILB=25.*(RK1*HTCLB/DLB*(THETLB-TLB)+(PHLB-1100.)/DT)/VLB
IF(KI-M) 150,151,151
151 PHLB=DLB
150 DHILBS=DHILB
XY=DHILBS+.5
IDH(I)=IFIX(XY)
DH2LB=1.0/(VLB*DT)
DH2LBS=DH2LB*.5
XY=DH2LBS-.5
IDH(I)=IFIX(XY)
C SET H DERIVATIVE DACS WITH AN UPDATE CODE OF ZER0.
CALL DACU(IE,IMDAC,O)
CALL DACU(IE,IMDH,O)
CALL SETBB1
C PUT THE LEFT TO RIGHT INTEGRATORS IN THE 0P MODE AND START
THE BCD COUNTER.
CALL SETWD(0,34)
D0 15 I=1,N
C CALCULATE P FOR PRESENT SPACE INCREMENT AND H DERIVATIVE FOR NEXT
SPACE INCREMENT WHILE ANALOG IS INTEGRATING OVER THE PRESENT SPACE INCRE
MENT.

1MAXD) G0 T0 61
WRITE(IW,60) I,KT,KI
60 FORMAT(IX, 'EITHER P(I) OR H(I), OR BOTH, IS OUT OF RANGE OF TABD F
19R I=','I4,'KT=','I4,'KI=','I4)
WRITE(IW,8000) P(I),H(I)
8000 FORMAT(I8,PF8.2,'H(I)=',PF8.2)
G0 T0 99
61 CALL TERP3(TABD,TABT,H(I),P(I),D(I),T(I),HMIN.,HMAX.,DELHD,NDH,PMI
0
1NL,PMAXD,DELPD,NDP)
0
1MAXM) G0 T0 71
WRITE(IW,70) I,KT,KI
70 FORMAT(IX, 'EITHER P(I) OR T(I), OR BOTH, IS OUT OF RANGE OF TABMU
IFOR I=','I4,'KT=','I4,'KI=','I4)
G0 T0 99
71 CALL TERP2(TABMU,T(I),P(I),WMU(I),TMINM,TMAXM,DELTM,NTM,PMINM,PMAX
0
1H,DELMH,NP)
RE(I)=CWNL*V(I)/WMU(I)
1MAXK) G0 T0 91
WRITE(IW,80) I,KT,KI
80 FORMAT(IX, 'EITHER P(I) OR T(I), OR BOTH, IS OUT OF RANGE OF TABF
19R I=','I4,'KT=','I4,'KI=','I4)
G0 T0 99
91 CALL TERP3(TABF,TABPR,T(I),P(I),CW(I),PR(I),TMK,TKAXK,DELTK,NTK,
0
1PMK,PMAXK,DELPK,NDPK)
HI=HK1*CW(I)*RE(I)**.923*PR(I)**.613
HTC=HI*HK3/(HI*HK0+HI*HK3+HK0*HK3)
IF(KT-1) 93,92,93
92 HK(I)=H(I)
93 CONTINUE
DH1=25.*(RK1*HTC/D(I)*(THETA(I)-T(I))+AK(I)-1100.)/DT)/V(I)
DH1S=DH1
XY=DH1S+.5
IDH(I)=IFIX(XY)
DH2 = -1.0/(V(I)*DT)
DH2S = DH2*1.54
XY = DH2S - 0.5
IDH(1,2) = FIX(XY)
C
CALCULATE P(I)
IF(I = 1) P53
IF(KT - 1) P72
VKL = VLB
72 P(I) = DLB*VLB*DX/PK*((V(I) - VLB)/DX + (VLB - VKL)/DT + PK*VLB) + PLB
GOTO 12
53 IF(KT - 1) P73
78 VK(I - 1) = V(I - 1)
73 P(I) = D(I - 1)*V(I - 1)*DX/PK*((V(I) - V(I - 1))/DX + (V(I - 1) - VK(I - 1))/DT + PK)

0 IF(V(I - 1)) = P(I - 1)
C
CHECK ANALOG COMPUTER FOR HOLD MODE.
12 IF (I TEST(1E, 0, 15)) 12, 12, 13
13 CONTINUE
C
RESET CLEAR BIT, BIT15.
CALL SETWD(0, 34)
C
READ ENTHALPY AT I' TH X STATION.
CALL ADDR(6223, LAB2)
CALL SCANH(LAB2, IH, 1)
H(I) = 100.4 + IH*4.5 - 2
1201 IF(KL - M) 33, 32, 32
32 H(I) = H(I)
33 CONTINUE
C
SET COEFFICIENT DEVICES FOR NEXT SPACE INCREMENT.
CALL SETBB2
C
PUT THE LEFT TO RIGHT INTEGRATORS IN THE OP MODE.
CALL SETWD(0, 35)
15 CONTINUE
C
GOTO ANALOG IC MODE ON THE LEFT TO RIGHT INTEGRATORS.
CALL SETWD(0, 32)
C
GET WEIGHTED VALUES FOR H AND P.
D0 333 IK = 1, N
STOR = P(IK)
P(IK) = ALF*P(IK) + (1. - ALF)*PL(IK)
PL(IK) = STOR
STOR = H(IK)
H(IK) = ALF*H(IK) + (1. - ALF)*HL(IK)
333 HL(IK) = STOR
C
D0 201
GET VALUE OF DENSITY AT RIGHT HAND END OF STEAM GENERATOR.
IF(P(N) .GE. PMAXD AND P(N) .LE. PMAXD AND H(N) .GE. HMIND AND H(N) .LE. HMIND) THEN
IMAXD) GOTO 201
WRITE (1W, 200) N, N
200 FORMAT (1X, 'EITHER P(,,I2,,) OR H(,,I2,,), OR BOTH, ARE OUT OF RANGE.' )
IF OF TABD.)
GOTO 99
201 CALL TERP3(TABD, TABT, H(N), P(N), D(N), T(N), HMIND, HMIND, DELHD, NHID, PMID

0 IND, PMAXD, DELPD, NPD)
C
CALCULATE THE STEAM VELOCITY AT THE THROTTLE.
AT = IAR(1)*1.54
VT = CPCB*P(N)/D(N)*AT
SJT = VT*1.54*SFV
XY = SJT + 0.5
IDV(5) = FIX(XY)
V(N) = VT
C
CALCULATE THE DERIVATIVES OF WATER VELOCITY AND SALT TEMP. AT
C
RIGHT BOUNDARY.
IF(P(N - 1) .GE. PMAXD AND P(N - 1) .LE. PMAXD AND H(N - 1) .GE. HMIND AND H(N - 1) .LE. HMIND)

1-1).LE.HMAXD) G0 T0 211
WRITE(IW,210)
210 FORMAT(IX,'EITHER P(N-1) OR H(N-1), OR BOTH, IS OUT OF RANGE OF TA

   1BD.')
G0 T0 211
211 CALL TECF2(TAED,H(N-1),P(N-1),D(N-1),HMIND,HMAXD,DELPD,NPD,PMIND,P

1MAXD,DELPD,NPD)
DVZRB=(D(N-1)-D(N))/(D(N)*DX)*1.E4
IF(DVZRB) 2527,2526,2526
2526 XY=DVZRB+.5
G0 T0 2528
2527 XY=DVZRB-.5
2528 IDV(2)=IFIX(XY)
IF(KT-1) 202,202,203
202 DK(N)=D(N)
203 DVIRB=SFV*(D(N)-DK(N))/(D(N)*DT)*1.E4
IF(DVIRB) 2529,2530,2530
2530 XY=DIVIRB+.5
G0 T0 2531
2529 XY=DIVIRB-,5
2531 IDV(1)=IFIX(XY)
IF(K1-M) 205,204,204
204 DK(N)=D(N)
205 CONTINUE
IDV(7)=(IAR(2)*1.E-1-1050.)*.5E2
THETA(N)=IAR(2)*1.E-1
IF(T(N).GE.TMINM.AND.T(N).LE.TMAXM) 60 T0 221
WRITE(IW,220)
220 FORMAT(IX,'EITHER T(N) OR P(N), OR BOTH, IS OUT OF RANGE OF TABMU.

   1')
G0 T0 99
221 CALL TECF2(TABMU,T(N),P(N),WMURB,TMINM,TMAXM,DELM,NTM,PMINM,PMAXM

   1,DELP,NPK)
IF(P(N).GE.PMINN.AND.P(N).LE.PMAXN) T0 231
WRITE(IW,230)
230 FORMAT(IX,'EITHER P(N) OR T(N), OR BOTH, IS OUT OF RANGE OF TABK'

   1)
G0 T0 99
231 CALL TECF3(TABK,TABPR,T(N),P(N),CWRB,PRRB,TMINK,TMAXK,DELTK,NTK,PM

   1,PMAXK,DELPK,NPK)
REB=CON1*D(N)*VT/WMURB
HIBH=HK1*CWRB*REBS++.923*PRRB*.613
HTCRRB=HIBH*H0*HK3/(HIBH*H0+HIBH*HK3+H0*HK3)
Z=(HTCRB*RK2+1/DT)/VS
IF(KT-1) 232,232,233
232 THETK=IAR(2)*1.E-1
233 DTIRB=(HTCRRB*RK2*T(N)+THETK/DT)*.5O./VS-Z*.525E5
 IF(K1-M) 235,234,234
234 THETK=IAR(2)*1.E-1
235 DTIRBS=DTIRB*SFVS
 IF(DTIRBS) 2532,2533,2533
2533 XY=DTIRBS+.5
G0 T0 2534
2532 XY=DTIRBS-.5
2534 DT2RB=Z*1.E4
DT2RBS=DT2RB*SFVS
YZ=DT2RBS+.5
IDV(3)=IFIX(XY)
IDV(4)=IFIX(Y2)
IDV(6)=1000
CALL DACU(IE,IRDAC,O)
CALL DACU(IE,IMDAC1,O)

C SET IC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
CALL SETB3
C PUT THE RIGHT TO LEFT INTEGRATORS IN THE 0P MODE AND START BCD C0U
NTER.
CALL SETW(0,40)
C CALCULATE DERIVATIVES OF THETA AND V FOR NEXT X INCREMENT.
DO 115 J=1,N-1
   L=N-J
   IF(L-1) 303,303,302
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   IF(KT-I) 236,236,237
C PUT THE RIGHT TO LEFT INTEGRATORS IN THE 0P MODE AND START BCD C0U

115 IF (L) 303,303,302
   IF(P(L).GE.PMIN. AND.P(L) .LE.PMAX. AND.H(L).GE.HMIN. AND.H(L)
C SET IC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   IF(KT-I) 236,236,237
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   J=J+1
   GOTO 115
302 IF(P(L).GE.PMIN. AND.P(L) .LE.PMAX. AND.H(L).GE.HMIN. AND.H(L)
C SET IC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   IF(KT-I) 236,236,237
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   J=J+1
   GOTO 115
303 IF(P(L).GE.PMIN. AND.P(L) .LE.PMAX. AND.H(L).GE.HMIN. AND.H(L)
C SET IC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   IF(KT-I) 236,236,237
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   J=J+1
   GOTO 115
304 IF(P(L).GE.PMIN. AND.P(L) .LE.PMAX. AND.H(L).GE.HMIN. AND.H(L)
C SET IC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   IF(KT-I) 236,236,237
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   J=J+1
   GOTO 115
236 IF(KT-I) 236,236,237
C PUT THE RIGHT TO LEFT INTEGRATORS IN THE 0P MODE AND START BCD C0U
NTER.
CALL SETW(0,40)
C CALCULATE DERIVATIVES OF THETA AND V FOR NEXT X INCREMENT.
   CALL SETIC AND DERIVATIVE DACS FOR SALT TEMP. AND WATER VELOCITY.
   CALL SETB3
   IF(KT-I) 236,236,237
HI = HK1 * CW(L) * RE(L)**.923 * PR(L)**.613
HTC = HI * H0 * HK3 / (HI * H0 + HI * HK3 + H0 * HK3)
Z = (HTC * RK2 + 1 / DT) / VS
IF (KT-1) 262, 262, 263
262 THETAK(L) = THETA(L)
263 DT1 = (HTC * RK3 * T(L) + THETAK(L) / DT) * 50 / VS - Z * 5250E5
265 DTIS = DTI * SFVS
IF (DTIS) 2538, 2539, 2539
2539 XY = DTIS + .5
G0 T0 2540
2538 XY = DTIS - .5
2540 DT2 = Z * 2
DT2S = DT2 * SFVS
YZ = DT2S + .5
IDV1(3) = IFIX(XY)
IDV1(4) = IFIX(YZ)
C CHECK ANALOG COMPUTER FOR HOLD MODE.
266 IF (ITEST(IE, 0, 15)) 266, 266, 267
267 CONTINUE
C RESET CLEAR BIT, BIT 15.
CALL SETWD(O, 40)
C READ THE SALT TEMP. AND THE WATER VELOCITY AT X STATION L.
CALL ADDR(6260, IAB4)
CALL SCANH(IAB4, IVTHET, 2)
VL = IVTHET(1) * 1.62 * 5.0 / SFV
THETA(L) = IVTHET(2) * 2.62 * 1050.
IF (KI-M) 269, 269, 269
269 VK(L) = VL(L)
269 CONTINUE
C SET COEFFICIENT DEVICES FOR NEXT SPACE INCREMENT.
CALL SETBB4
C PUT THE RIGHT TO LEFT INTEGRATORS IN THE TO MODE.
CALL SETWD(O, 44)
115 CONTINUE
C LET INTEGRATION PROCEED WITH DERIVATIVES AT STATION I, TO GET
C VALUES AT LEFT BOUNDARY.
C CHECK FOR INTEGRATOR HOLD MODE.
243 IF (ITEST(IE, 0, 15)) 243, 243, 244
244 CALL ADDR(6260, IAB4)
CALL SCANH(IAB4, IVTHET, 2)
VLB = IVTHET(1) * 1.62 * 5.0 / SFV
THETLB = IVTHET(2) * 2.62 * 1050.
IF (KI-M) 152, 153, 153
152 VKLB = VLB
C G0 T0 HOLD MODE ON SALT TEMP. T-H AMPLIFIER.
CALL SETLI(IE, 0, 10, 0)
C READ THE VALUES OF T(N), P(N), V(N), AND D(N), AND SET THEIR
C VALUES ON T-H AMPLIFIERS.
C TEMP = T(N) * 5.0
IOUTV(1) = IFIX(TEMP)
POUT = P(N) * 2.0
IOUTV(2) = IFIX(POUT)
VOUT = V(N) * 50.
IOUTV(3) = IFIX(VOUT)
DOUT = D(N) * 1.63
IOUTV(4) = IFIX(DOUT)
D0 3111 L = 1, 4
3111 CALL STND(IE, IOUTA(L), IOUTV(L))
152 CONTINUE
D0 600 LL = 1, N
STOR = V(LL)
VL(LL) = ALF * (VL(LL) + (1. - ALF) * VL(LL))
VL(LL) = STOR
STOR = THETA(LL)
THETA(LL) = ALF * THETA(LL) + (1. - ALF) * THETAL(LL)
600 THETAL(II)=STOR
C IF LESS THAN M'TH ITERATION, G0 TO NEXT ITERATION.
C IF M'TH ITERATION, WAIT FOR END OF TIME STEP.
C RESET DELTA T TIMER AND PROCEED WITH NEXT TIME STEP.
IF(KI-M) 1000,2000,2000
2000 KI= ITEST(IE,0,14)
C HAS TIME STEP TIMER TIMED OUT?
IF( ITEST(IE,0,14)) 2002,2002,2001
2001 WRITE(1W,2010)
2010 FORMAT(1X,'THE COMPUTER TIME REQUIRED PER TIME STEP EXCEEDS
THE DELTA T ALLOWED."
G0 TO 99
C WAIT FOR TIME STEP TIMER TO TIME OUT.
2002 IF( ITEST(IE,0,14)) 2002,2002,2004
C PUT SALT TEMP. T-H AMPLIFIER IN TRACK MODE.
2004 CALL SETL(IE,0,10,1)
G0 TO 2003
99 RETURN
END
SUBROUTINE TERP2(TAB,X,Y,VAL,X1,XN,DX,NX,Y1,YN,DY,NY)
DIMENSION TAB(NX,NY)
CALL FRAC1(X1,XN,DX,IX,FRX,X)
CALL FRAC1(Y1,YN,DY,IY,FRY,Y)
VAL=TAB(IX,IY)*(1.-FRX)+(1.-FRY)+TAB(IX+1,IY)*(1.-FRX)*FRY+TAB(IX+
11,IX)*FRX*(1.-FRY)+TAB(IX+1,IX+1)*FRX*FRY
RETURN
END
SUBROUTINE FRAC1(X1,XN,DX,IX,FRX,X)
DUNIT=(X-X1)/DX
IX=IFIX(DUNIT)+1
FRX=DUNIT+1.-IX
RETURN
END
SUBROUTINE TERP3(TB1,TB2,X,Y,VL1,VL2,X1,XN,DX,NX,Y1,YN,DY,NY)
DIMENSION TB1(NX,NY),TB2(NX,NY)
CALL FRAC1(X1,XN,DX,IX,FRX,X)
CALL FRAC1(Y1,YN,DY,IY,FRY,Y)
A1=(1.-FRX)*(1.-FRY)
A2=FRX*(1.-FRY)
A3=FRX*FRY
A=FRY*(1.-FRX)
VL1=TB1(IX,IY)*A1+TB1(IX+1,IY)*A2+TB1(IX+1,IX+1)*A3+TB1(IX,IX+1)*A
VL2=TB2(IX,IY)*A1+TB2(IX+1,IY)*A2+TB2(IX+1,IX+1)*A3+TB2(IX,IX+1)*A
RETURN
END
TITLE SETBB1
ENTRY SETBB1
EXTERN VALU1, ADDRS1, NSEQ1

SETBB1: O

MOVN 1, NSEQ1
DATA0 700, [22]
DATA0 704, @ADDRS1
DATA0 700, [33]

JBF2: DATA0 704, @VALU1
AJL 1, JBF2
DATA0 700, [30]
DATA0 704, [7]
JRA 16, (16)
END

TITLE SETBB2
ENTRY SETBB2
EXTERN VALU2, ADDRS2, NSEQ2

SETBB2: O

MOVN 1, NSEQ2
DATA0 700, [22]
DATA0 704, @ADDRS2
DATA0 700, [33]

JBF2: DATA0 704, @VALU2
AJL 1, JBF2
DATA0 700, [30]
DATA0 704, [7]
JRA 16, (16)
END

TITLE SETBB3
ENTRY SETBB3
EXTERN VALU3, ADDRS3, NSEQ3

SETBB3: O

MOVN 1, NSEQ3
DATA0 700, [22]
DATA0 704, @ADDRS3
DATA0 700, [33]

JBF2: DATA0 704, @VALU3
AJL 1, JBF2
DATA0 700, [30]
DATA0 704, [7]
JRA 16, (16)
END

TITLE SETBB4
ENTRY SETBB4
EXTERN VALU4, ADDRS4, NSEQ4

SETBB4: O

MOVN 1, NSEQ4
DATA0 700, [22]
DATA0 704, @ADDRS4
DATA0 700, [33]
JBF2: DATA0 704, @VALU4
  A0JL 1, JBF2
  DATA0 700, [30]
  DATA0 704, [7]
  JRA 16, (16)
  END

  TITLE PREB1
  ENTRY PREB1
  EXTERN ARGTRN
  INTERN VALU1, ADDRS1, NSEQ1

PREB1: O
  MOVE 1, SAV+1
  MOVE 0, SAV
  MOVE 0, 02(16)
  MOVE 0, NSEQ1
  JSR ARGTRN
  JUMP 0, 0
  ADD 1, NSEQ1
  HRRM 1, ADDRS1
  JSR ARGTRN
  JUMP 0, 1
  ADD 1, NSEQ1
  HRRM 1, VALU1
  MOVE 0, SAV
  MOVE 1, SAV+1
  JRA 10, 3(16)

SAVE: BLOCK 2
VALU1: 000001000000
ADDRS1: 000001000000
END

  TITLE PREB2
  ENTRY PREB2
  EXTERN ARGTRN
  INTERN VALU2, ADDRS2, NSEQ2

PREB2: O
  MOVE 1, SAV+1
  MOVE 0, SAV
  MOVE 0, 02(16)
  MOVE 0, NSEQ2
  JSR ARGTRN
  JUMP 0, 0
  ADD 1, NSEQ2
  HRRM 1, ADDRS2
  JSR ARGTRN
  JUMP 0, 1
  ADD 1, NSEQ2
  HRRM 1, VALU2
  MOVE 0, SAV
  MOVE 1, SAV+1
  JRA 10, 3(16)
SAV:    BLOCK 2
VALU2:  000001000000
ADDRS2: 000001000000
END
TITLE PREB3
ENTRY PREB3
EXTERN ARGTRN
INTERN VALU3,ADDRS3,NSEQ3
PREB3:  O
MOVEM 1,SAV+1
MOVEM 0,SAV
MOVE 0,#2(16)
MOVEM 0,NSEQ3#
JSR ARGTRN
JUMP 0,0
ADD 1,NSEQ3
HRRM 1,ADDRS3
JSR ARGTRN
JUMP 0,1
ADD 1,NSEQ3
HRRM 1,VALU3
MOVE 0,SAV
MOVE 1,SAV+1
JRA 16,3(16)
SAV:    BLOCK 2
VALU3:  000001000000
ADDRS3: 000001000000
END
TITLE PREB4
ENTRY PREB4
EXTERN ARGTRN
INTERN VALU4,ADDRS4,NSEQ4
PREB4:  O
MOVEM 1,SAV+1
MOVEM 0,SAV
MOVE 0,#2(16)
MOVEM 0,NSEQ4#
JSR ARGTRN
JUMP 0,0
ADD 1,NSEQ4
HRRM 1,ADDRS4
JSR ARGTRN
JUMP 0,1
ADD 1,NSEQ4
HRRM 1,VALU4
MOVE 0,SAV
MOVE 1,SAV+1
JRA 16,3(16)
SAV:    BLOCK 2
VALU4:  000001000000
ADDRS4: 000001000000
END
7.2.2 Steam Generator Equation Variables

ALF  Weighting variable.

AT  Area of steam throttle opening, normalized to a value of 1.0 for design point.

C  Coefficient of friction.

CFCON  Normalization constant in the steam throttle equation.

CON1  Normalization constant used in the Reynolds number formula.

CW  Coefficient of friction of water.

CWLB  Coefficient of friction of water at the left boundary.

CWRB  Coefficient of friction of water at the right boundary.

D  Water density.

DELHD  Spacing of enthalpy points in TABD.

DELPD  Spacing of pressure points in TABD.

DELPH  Spacing of pressure points in TABH.

DELPK  Spacing of pressure points in TABK.

DELPM  Spacing of pressure points in TABMU.

DELPP  Spacing of pressure points in TABPR.

DELPT  Spacing of pressure points in TABT.

DELTH  Spacing of temperature points in TABH.

DELTK  Spacing of temperature points in TABK.

DELM  Spacing of temperature points in TABMU.

DELTP  Spacing of temperature points in TABPR.
DELTt  Spacing of enthalpy points in TABT.
DH1   Terms of dH/dX not containing H.
DH1S  Analog computer scaled value of DH1.
DH1LB DH1 at left boundary.
DH1LBS Analog computer scaled value of DH1LB.
DH2   Terms of dH/dX containing H (feedback).
DH2S  Analog computer scaled value of DH2.
DH2LB DH2 at left boundary.
DH2LBS Analog computer scaled value of DH2LB.
DK    Water density for the immediately preceding time step.
DLB   Water density at the left boundary.
DOUT  Water density at the water outlet of the steam generator.
DT    Length of time in each calculational time step.
DT1   Terms of d(THETA)/dX not containing THETA.
DT1S  Analog computer scaled value of DT1.
DT1RB DT1 at right boundary.
DT1RBS Analog computer scaled value for DT1RB.
DT2   Terms of d(THETA)/dX containing THETA (feedback).
DT2S  Analog computer scaled value for DT2.
DT2RB DT2 at right boundary.
DT2RBS Analog computer scaled value for DT2RB.
DV1   Terms of dV/dX not containing V.
DV2  Terms of dV/dX containing V (feedback).
DV1RB DV1 at right boundary.
DV1RBS Analog computer scaled value for DV1RB.
DX Distance in the direction of water flow, X, between coefficient update stations.
H Water enthalpy.
HI The film heat transfer coefficient on the inside of the tube wall.
HILB HI at left boundary.
HIRB HI at right boundary.
HK The value of H for the immediately preceding time step.
HK1 Constant used in calculation of HI.
HK2 Constant used in calculation of HO.
HK3 Heat transfer coefficient of tube wall.
HL The value of H for the immediately preceding time step.
HLB H at left boundary.
HLBS Analog computer scaled value for HLB.
HMAXD The maximum value of H in TABD.
HMAXT The maximum value of H in TABT.
HMIND The minimum value of H in TABD.
HMINT The minimum value of H in TABT.
HO The film heat transfer coefficient on the outside tube wall.
HSF Scale factor for DH1.
HTC The overall heat transfer coefficient (salt to water).
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTCLB</td>
<td>HTC at left boundary.</td>
</tr>
<tr>
<td>HTCRB</td>
<td>HTC at right boundary.</td>
</tr>
<tr>
<td>IAR</td>
<td>An array of values read from the analog computer.</td>
</tr>
<tr>
<td>IDH</td>
<td>An array of values to be set on specified coeff. devices on the analog computer.</td>
</tr>
<tr>
<td>IDH1</td>
<td>An array of values to be set on specified coefficient devices on the analog computer.</td>
</tr>
<tr>
<td>IDV</td>
<td>An array of values to be set on specified coefficient devices on the analog computer.</td>
</tr>
<tr>
<td>IDV1</td>
<td>An array of values to be set on specified coeff. devices on the analog computer.</td>
</tr>
<tr>
<td>ILB</td>
<td>An array of values read from the analog computer (PLB, TLB, and VS).</td>
</tr>
<tr>
<td>IOUTA</td>
<td>An array of analog computer addresses.</td>
</tr>
<tr>
<td>IOUTV</td>
<td>An array of values to be read from the analog computer, using the addresses in IOUTA.</td>
</tr>
<tr>
<td>IR</td>
<td>The device number of the reading device.</td>
</tr>
<tr>
<td>IT</td>
<td>The code number used to set the analog computer time scale.</td>
</tr>
<tr>
<td>IVTHET</td>
<td>An array of values to be read from the analog computer.</td>
</tr>
<tr>
<td>IW</td>
<td>The device number of the output device.</td>
</tr>
<tr>
<td>K1</td>
<td>Iteration count variable.</td>
</tr>
<tr>
<td>KT</td>
<td>Time step count variable.</td>
</tr>
<tr>
<td>KX</td>
<td>Dummy variable.</td>
</tr>
<tr>
<td>M</td>
<td>Number of iterations per time step.</td>
</tr>
<tr>
<td>N</td>
<td>Number of coefficient update stations in the X direction.</td>
</tr>
</tbody>
</table>
NHD  Number of enthalpy grid points in TABD.
NPD  Number of pressure grid points in TABD.
NPH  Number of pressure grid points in TABH.
NPK  Number of pressure grid points in TABK.
NPM  Number of pressure grid points in TABMU.
NPP  Number of pressure grid points in TABPR.
NPT  Number of pressure grid points in TABT.
NTH  Number of temperature grid points in TABH.
NTK  Number of temperature grid points in TABK.
NTM  Number of temperature grid points in TABMU.
NTP  Number of temperature grid points in TABPR.
NTT  Number of enthalpy grid points in TABT.
P    Water pressure.
PHLB H at the left boundary for the immediately preceding time step.
PK   Constant in dP/dX.
PKF  Constant in dP/dX.
PL   Water pressure value for the immediately preceding time step.
PLB  Water pressure at the left boundary.
PMAXD Maximum pressure in TABD.
PMAXH Maximum pressure in TABH.
PMAXK Maximum pressure in TABK.
PMAXM Maximum pressure in TABMU.
PMAXP  Maximum pressure in TABPR.
PMAXT  Maximum pressure in TABT.
PMIND  Minimum pressure in TABD.
PMINH  Minimum pressure in TABH.
PMINK  Minimum pressure in TABK.
PMINM  Minimum pressure in TABMU.
PMINP  Minimum pressure in TABPR.
PMINT  Minimum pressure in TABT.
PR     Prandtl number.
PRLB   Prandtl number at left boundary.
PRRB   Prandtl number at right boundary.
POUT   Water pressure at steam generator outlet.
RE     Reynolds number.
RELB   Reynolds number at left boundary.
RERB   Reynolds number at right boundary.
RK1    Constant.
RK2    Constant.
SFH    Scale factor for H.
SFV    Scale factor for throttle area.
SFVS   Scale factor for VS.
SVT    Scaled throttle area.
T      Water temperature.
TABD  Table expressing water density as a function of P and H.
TABH  Table expressing water enthalpy as a function of P and T.
TABK  Table expressing thermal conductivity of water as a function of P and T.
TABMU Table expressing viscosity of water as a function of P and T.
TABPR Table expressing the Prandtl number of water as a function of P and T.
TABT  Table expressing water temperature as a function of P and H.

TEMPO  Water temperature at steam generator outlet.

THETA  Secondary salt temperature.

THETAK Secondary salt temperature at the immediately preceding time step.

THETK1 Secondary salt temperature at the left boundary for the immediately preceding time step.

THETLB Secondary salt temperature at the left boundary.

TLB  Water temperature at the left boundary.

TMAXH Maximum temperature in TABH.

TMAXK Maximum temperature in TABK.

TMAXM Maximum temperature in TABMU.

TMAXP Maximum temperature in TABPR.

TMINH Minimum temperature in TABH.

TMINK Minimum temperature in TABK.

TMINM Minimum temperature in TABMU.

TMINP Minimum temperature in TABPR.

V  Water velocity.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VK</td>
<td>Water velocity value for the immediately preceding time step.</td>
</tr>
<tr>
<td>VKLB</td>
<td>VK at left boundary.</td>
</tr>
<tr>
<td>VLB</td>
<td>Water velocity at left boundary.</td>
</tr>
<tr>
<td>VOUT</td>
<td>Water velocity at steam generator outlet (water).</td>
</tr>
<tr>
<td>VS</td>
<td>Secondary salt velocity.</td>
</tr>
<tr>
<td>VT</td>
<td>Water velocity at throttle.</td>
</tr>
<tr>
<td>WMU</td>
<td>Water viscosity.</td>
</tr>
<tr>
<td>WMULB</td>
<td>Water viscosity at left boundary.</td>
</tr>
<tr>
<td>WMURB</td>
<td>Water viscosity at right boundary.</td>
</tr>
</tbody>
</table>
INTERNAL DISTRIBUTION

1. J. L. Anderson
2. C. F. Baes
3. S. J. Ball
4. H. F. Bauman
5. S. E. Beall
6. M. Bender
7. C. E. Bettis
8. E. S. Bettis
9. E. G. Bohlmann
10. R. S. Booth
11. C. J. Borkowski
12. G. E. Boyd
13. R. B. Briggs
14-18. O. W. Burke
19. O. B. Cavin
20. N. E. Clapp, Jr.
21. F. H. Clark
22. D. F. Cope
23. J. L. Crowley
24. F. L. Culler
25. J. R. Distefano
26. S. J. Ditto
27. W. P. Eatherly
28. J. R. Engel
29. D. E. Ferguson
30. L. M. Ferris
31. W. R. Grimes
32. A. G. Grindell
33. P. N. Haubenreich
34. R. E. Helms
35. W. H. Jordan
36. P. R. Kasten
37. T. W. Kerlin
38. J. J. Keyes
39. Kermit Laughon
40. M. I. Lundin
41. H. G. McPherson
42. R. E. McPherson
43. H. E. McCoy
44. H. A. McLain
45. L. E. McNeese
46. J. R. McWherter
47. R. L. Moore
48. E. L. Nicholson
49. L. C. Oakes
50. A. M. Perry
51. T. W. Pickel
52-53. M. W. Rosenthal
54. G. S. Sadowski
55. Dunlap Scott
56. W. H. Sides, Jr.
57. M. J. Skinner
58. R. S. Stone
59. J. R. Tallackson
60. R. E. Thoma
61. D. B. Trauger
62. A. M. Weinberg
63. J. R. Weir
64. J. C. White--A. S. Meyer
65-66. Central Research Library
67. Document Reference Section
68-69. Laboratory Records Department
70. Laboratory Records, ORNL R.C.

EXTERNAL DISTRIBUTION

71. John F. Cox, Nuclear Department, Foster Wheeler Corporation, 110 South Orange Avenue, Livingston, N. J. 07039
72. C. B. Deering, Black and Veatch Engineers, 1500 Meadowlake Parkway, Kansas City, Missouri 64114
74. George McCright, Black and Veatch Engineers, 1500 Meadowlake Parkway, Kansas City, Missouri 64114
77. H. G. O'Brien, Tennessee Valley Authority, 210A Union Building, Knoxville, Tennessee 37902
79. C. S. Walker, Tennessee Valley Authority, Union Building, Knoxville, Tennessee 37902
80. J. R. Trinko, Ebasco Services Incorporated, 2 Rector Street, New York, N. Y. 10006
81. Research and Technical Support Division, AEC, ORO
82-83. Division of Technical Information Extension