CORROSION OF TYPE 304L STAINLESS STEEL AND HASTELLOY N BY MIXTURES OF BORON TRIFLUORIDE, AIR, AND ARGON

J. W. Koger
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
CORROSION OF TYPE 304L STAINLESS STEEL AND HASTELLOY N BY
MIXTURES OF BORON TRIFLUORIDE, AIR, AND ARGON

J. W. Koger

DECEMBER 1972

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

NOTICE
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use
would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
CONTENTS

Abstract ... 1
Introduction .. 1
Background Data ... 3
Results of the Current Experiments 8
Conclusions .. 13
Acknowledgments ... 14
CORROSION OF TYPE 304L STAINLESS STEEL AND HASTELLOY N BY MIXTURES OF BORON TRIFLUORIDE, AIR, AND ARGON

J. W. Koger

ABSTRACT

Corrosion of type 304L stainless steel and Hastelloy N was studied in gaseous mixtures of BF₃, air, and argon at 600, 300, and 200°C. In some tests the alloy specimens and gases were in contact with molten fluoride mixtures. At 600°C under air, specimens of both alloys were completely destroyed in both fuel salt and fluoroborate salt mixtures. No significant weight changes were measured for Hastelloy N immersed in salt exposed to argon or BF₃, but type 304L stainless steel lost weight under the same conditions. This weight loss was greater under BF₃ than under argon and greater in the fluoroborate mixture than in the fuel salt. With no salt immersion, the various gases produced very small changes in the alloys at 200°C. Also with no salt, only small changes were noted at 300 and 600°C for Hastelloy N in any gas and for the stainless steel in air. At 600°C, large quantities of chromium and iron oxides were produced on the stainless steel by the air-BF₃ mixture and large amounts of unidentified corrosion products by BF₃, argon-BF₃, and argon-air. Drying the argon decreased the amount of corrosion. Hastelloy N was more resistant than type 304L stainless steel to corrosion by the gases tested in these experiments.

INTRODUCTION

Over the past few years, increased interest has been shown in the use of a sodium fluoroborate mixture, NaBF₄-8 mole % NaF, as a coolant in a Molten-Salt Breeder Reactor. The physical properties of the salt mixture have been determined¹ and many experiments²-¹² have been undertaken to

ascertain the corrosion of various alloys in this salt. The use of this mixture in a high-temperature environment is somewhat complicated by the fact that the NaBF₄ dissociates by the reaction

\[\text{NaBF}_4 \rightleftharpoons \text{NaF} + \text{BF}_3(g) \]

and the effect of the BF₃ gas must be considered. The equilibrium pressure above a melt of NaBF₄–8 mole % NaF as a function of temperature is given by

\[\log P_{\text{torr}} = 9.024 - \frac{5920}{T(\text{K})} \]

The maximum design temperature for the coolant salt mixture is 621°C, and this corresponds to a partial pressure of BF₃ of 252 torr. Because of the appreciable vapor pressure of BF₃ at operating temperatures, cover gases

containing equivalent concentrations of BF₃ must be maintained in the free volume of the pump bowl of dynamic systems or used for gas sparge operations.

BACKGROUND DATA

An early report on corrosion experiments with gaseous boron trifluoride¹³ noted that the BF₃ reacted rapidly with traces of moisture to give hydroxyfluoboric acid (HBF₃OH) and HF. It also showed that BF₃ and glass reacted at an appreciable rate just above 200°C. Under the conditions of those experiments, there was no appreciable attack by BF₃ on any metal or alloy examined at temperatures up to 200°C.

A systematic study of the compatibility of Hastelloy N with BF₃ had not been undertaken before this study, but several observations indicated possible compatibility problems. These observations were often made in the course of experiments where compatibility was not the primary objective, and the results are difficult to interpret. However, these miscellaneous observations do contribute to our understanding of metal-BF₃-moisture reactions.

In one experimental program¹⁴ BF₃ contacted chromium metal (a constituent almost all alloys considered for use in a molten salt system) 60 hr at 650°C. The chromium sample gained weight (about 4%), and the weight gain showed a linear dependence on the square root of the reaction time. The surface of the chromium sample contained substantial quantities of Cr₂O₃ and minor quantities of CrF₂-CrF₃. Thus, commercially available BF₃ did promote the oxidation of pure chromium.

In all Hastelloy N thermal convection loop tests⁵-¹² that have involved the fluoroborate mixture, specimens have been placed in the vapor

space above the hot and cold leg surge tanks to provide some data on the compatibility of BF₃ with Hastelloy N. The vapor space contained about 220 torr BF₃ and 5 psig He. Since the mass transfer rates in these systems were quite dependent on salt purity, which varied from loop to loop, the weight changes of the specimens exposed to the vapor (Table 1) are scattered. However, in none of the cases were the losses excessive. Based on uniform removal of all alloy constituents, the maximum corrosion rate was 0.04 mil/year.

In another experiment Hastelloy N specimens were exposed to static BF₃ vapor for 6800 hr at 605°C in capsules that contained the fluoroborate mixture. The BF₃ pressure was varied in each capsule. Table 2 shows the measured weight changes. The weight changes were quite small, and no composition changes were noted in any of the specimens.

Another experience with BF₃ involved a pump loop (PKP-1), which was used to test a molten-salt pump with the fluoroborate mixture. An Inconel 600 bubbler tube, which had been used for BF₃ addition and salt level indication, had been in service 11,567 hr and was suspected to have become plugged just before the loop shutdown. During most of the test program the total gas flow rate was 370 cm³/min. The gas was He-13.5 vol % BF₃. The outside of the tube was exposed to the fluoroborate mixture at 550°C. After removal from the loop, examination disclosed a plug at the bottom of the inside of the tube. Above the plug, in order, were a thin black film, a gray thin deposit with a sprinkling of green particles, a bright green deposit, and finally green material covered with magnetic powder. The green deposit was Na₃CrF₆, and the magnetic mixture was equivalent to Ni₃Fe. Figure 1 shows a cross section of the tubing wall near the liquid-gas interface. We saw a zone of metallic crystals on the inner surface to a thickness of approximately 20 mils. In view of the apparent loss of wall thickness in this area, these crystals probably represent vestiges of the original metal surface. Figure 2 shows a higher

Table 1. Weight Losses of Hastelloy N Specimens Exposed to BF₃ in a Thermal Convection Loops

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Time (hr)</th>
<th>Weight Loss (mg/cm²)</th>
<th>Rate of Weight Loss (mg cm⁻² hr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>530</td>
<td>4,150</td>
<td>0</td>
<td>0 × 10⁻⁵</td>
</tr>
<tr>
<td>530</td>
<td>21,983</td>
<td>0.3</td>
<td>1.4</td>
</tr>
<tr>
<td>530</td>
<td>23,427</td>
<td>0.3</td>
<td>1.3</td>
</tr>
<tr>
<td>530</td>
<td>32,090</td>
<td>0.15</td>
<td>0.47</td>
</tr>
<tr>
<td>593</td>
<td>19,433</td>
<td>0.4</td>
<td>2.1</td>
</tr>
<tr>
<td>607</td>
<td>4,150</td>
<td>0.4</td>
<td>9.7</td>
</tr>
<tr>
<td>607</td>
<td>21,983</td>
<td>2.2</td>
<td>10</td>
</tr>
<tr>
<td>607</td>
<td>23,427</td>
<td>0.3</td>
<td>1.3</td>
</tr>
<tr>
<td>607</td>
<td>32,090</td>
<td>2.0</td>
<td>6.2</td>
</tr>
<tr>
<td>687</td>
<td>19,433</td>
<td>0.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 2. Weight Losses of Hastelloy N Specimens Exposed to Various Pressures of BF₃ at 605°C for 6800 hr.⁸

<table>
<thead>
<tr>
<th>BF₃ Pressure (psia)</th>
<th>Weight Loss (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>0.03</td>
</tr>
<tr>
<td>64.7</td>
<td>0.3</td>
</tr>
<tr>
<td>114.7</td>
<td>0.4</td>
</tr>
<tr>
<td>414.7</td>
<td>0</td>
</tr>
</tbody>
</table>

magnification of the inside surface, both as polished and etched, and tends to corroborate that the crystals are a result of material leaving the surface rather than material deposition. The material on the inside of the tube above the liquid level appeared to be the result of attack by water-derived impurities in the BF$_3$.

On removing the pump rotary element from the loop and dismantling the various pump components, Smith17 found that the inner heat baffle plates had been severely attacked, as evidenced by holes in some places and by severe pitting in other places. The attack was not homogeneous on any one plate or constant from one plate to another. The top surface of the top

Fig. 2. Inside Surface of Inconel 600 Bubbler Tube from PKP-1 Pump Exposed to He-13.5 vol % BF$_3$ for 11,500 hr. (a) As Polished, 500×. (b) Etched with Aqua Regia, 500×.
plate was severely pitted, but the other surfaces that combined to form
the chamber above the top plate (shaft, inner surface of impeller housing
support cylinder, and lower surface of the cooling oil chamber) were
relatively free of attack. All baffle plates except the one below the top
plate had holes corroded completely through. The inner heat baffles fitted
very tightly against the inner surface of the upper impeller housing sup-
port cylinder, so that probably most of the gas flow was past the inner
annulus between the baffle plate and the pump shaft. The attack was attri-
buted to the intimate contact of purge gas (or more correctly, the moisture
in the purge gas) with puddles of salt that lay on the baffle surfaces.
We believe that the temperature in this region was 280°C or less, so the
water-salt reaction products appear to be highly corrosive even at rela-
tively low temperatures.

Because of the findings in this pump bowl and other questions concern-
ing the role of BF₃ in corrosion of alloys, we felt that the compatibility
of BF₃ and various gas mixtures with candidate alloys for molten salt use
should be studied systematically. As a first test, we exposed type 304L
stainless steel and Hastelloy N to argon, air, BF₃, and mixtures of these
for 100 hr at temperatures from 200 to 600°C.

RESULTS OF THE CURRENT EXPERIMENTS

The reaction chamber was a 30-in. length of 2-in. IPS nickel pipe,
mounted horizontally in a 3-in. tube furnace. The reacting gases were
admitted through a penetration in the end plate that was welded to one
end of the pipe. Sheathed thermocouples also penetrated the end plate
and extended into the central region on the heated zone. Several thermo-
couples were attached along the outside of the nickel pipe. The other
end of the reaction chamber, which extended some 10 in. out of the tube
furnace, was closed by Teflon in a threaded pipe cap. The gas manifold
system provided for the introduction of helium, BF₃, argon, air, or mix-
tures of these gases at known flow rates into the reaction chamber. The
system was sealed from the atmosphere by bubbling the gas effluent through
a fluorocarbon oil. Metal samples were carried in nickel boats inserted
through the threaded access port. In several runs, metal specimens were placed with a fuel salt, LiF—20 mole % BeF$_2$—11.7 mole % ThF$_4$—0.3 mole % UF$_4$, or a coolant salt, NaBF$_4$—8 mole % NaF, in the nickel boats. The tests lasted 100 hr, and the gas flow rate was 100 cm3/min. The metal specimens were approximately 0.75 × 0.375 × 0.030 in. and weighed about 1 g. Specimens were weighed before and after each test, and reaction products were analyzed whenever possible. The nominal amounts of the major alloying constituents of Hastelloy N and type 304L stainless steel are given in Table 3.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Ni</th>
<th>Cr</th>
<th>Fe</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastelloy N</td>
<td>70</td>
<td>7</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>Type 304L stainless steel</td>
<td>10</td>
<td>18</td>
<td>69</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4 gives the results for the metal-salt combinations exposed to various gases at 600°C for 100 hr.

As was expected, air in combination with the fluoride salts produced highly corrosive conditions, which destroyed not only the specimens but the nickel boats. None of the weight changes measured for the Hastelloy N immersed in salt and exposed to any of the gas mixtures other than air were significant. For the stainless steel specimens immersed in salt, BF$_3$ gas caused more attack than argon. A larger moisture content in the BF$_3$ probably caused the greater attack. The fluoroborate mixture was more aggressive toward the stainless steel than the fuel salt. Weight losses rather than weight gains occurred because the corrosion products were dissolved from the specimens by the salt.

Table 5 gives the results for alloys exposed to the various gas mixtures without salt at temperatures from 200 to 600°C for 100 hr. In most cases, weight gains were found, since the corrosion products remained on the specimens and were not carried away.
Table 4. Weight Changes of Hastelloy N and Type 304L Stainless Steel Exposed to Various Gases while Immersed in Fluoride Salts at 600°C for 100 hr. Gas Flow 100 cm³/min

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Salt</th>
<th>Weight Change, a mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Argon b</td>
</tr>
<tr>
<td>Hastelloy N</td>
<td>Fuel d</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>Coolant e</td>
<td>+0.06</td>
</tr>
<tr>
<td>Type 304L stainless steel</td>
<td>Fuel d</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td>Coolant e</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

a Specimens exposed to air containing 7.5 ppm moisture were completely destroyed.

b 24 ppm moisture.

c 50 ppm moisture.

d LiF-20 mole % BeF₂-11.7 mole % ThF₄-0.3 mole % UF₄.

e NaBF₄-8 mole % NaF.

For Hastelloy N, the only significant changes measured at 600°C were in the mixtures containing air. This effect can be attributed to too small an amount of chromium in the Hastelloy to provide good resistance to air oxidation. At 200 and 300°C, all changes were rather small.

For the stainless steel at 600°C, the air-BF₃ mixture produced a large amount of chromium and iron oxides, which is shown in Fig. 3(b). The stainless steel specimen from which the oxides in Fig. 3(b) had been removed is shown in Fig. 3(c), and a relatively unaffected stainless steel specimen that had been exposed to air at 200°C is shown in Fig 3(a). By itself, BF₃ at 600°C also produced a large amount of corrosion product on the stainless steel and was more aggressive than argon. Significant weight gains of the stainless steel specimens were produced at 300°C and 600°C by all gas mixtures except air. At 200°C, most changes were rather small. Reaction of the stainless steel with argon, air, and an argon-BF₃ mixture resulted in a red corrosion product on the surface, whereas reaction with BF₃ by itself resulted in the formation of white material on the surface. These red and white corrosion products could not be
Table 5. Weight Changes of Hastelloy N and Type 304L Stainless Steel Exposed to Various Gases at 200 to 600 °C for 100 hr. Gas Flow 100 cm³/min

<table>
<thead>
<tr>
<th>Gas</th>
<th>Moisture (ppm)</th>
<th>Temp. (°C)</th>
<th>Weight Change, mg/cm²</th>
<th>Hastelloy N</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon</td>
<td>24</td>
<td>600</td>
<td>+0.06</td>
<td>+0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>+0.3b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>+0.03</td>
<td>+0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon³</td>
<td>2</td>
<td>600</td>
<td>+0.03</td>
<td>+0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0</td>
<td>+0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-0.03</td>
<td>+0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF₃</td>
<td><50</td>
<td>600</td>
<td>0</td>
<td>+5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>+0.2</td>
<td>+3.3d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-0.03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>7.5</td>
<td>600</td>
<td>+0.2</td>
<td>-0.03b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>+0.03</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>+0.03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon-BF₃</td>
<td>24e</td>
<td>600</td>
<td>-0.03</td>
<td>+0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>+0.03</td>
<td>+5.85f</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon³-BF₃</td>
<td>2e</td>
<td>600</td>
<td>+0.03</td>
<td>+0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>+0.3</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-BF₃</td>
<td>600</td>
<td>+0.2</td>
<td>+119.2g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0</td>
<td>+25.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0</td>
<td>-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon-air</td>
<td>24e</td>
<td>600</td>
<td>-0.1</td>
<td>+0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0</td>
<td>+10.0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-0.03</td>
<td>+0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aNear gas entrance.
bAdherent red layer on surface.
cDried by passing through heated titanium sponge.
dLarge amount of nonadherent white material on surface; 0.0290 g removed.
eIn the argon.
fLarge amount of nonadherent red material on surface; 0.0745 g removed.
gLarge amount of oxide on surface, identified by x-ray diffraction as 25 mole % Cr₂O₃ and 75 mole % Fe₂O₃.
hLarge amount of material flaked off.
Fig. 3. (a) Type 304L Stainless Steel Specimen Exposed to Air at 200°C for 100 hr. (b) Chromium and iron oxides removed from a similar specimen after exposure to mixed air and BF₃ for 100 hr at 500°C. (c) Specimen from which oxide in (b) had been removed.
identified by x-ray analysis but contained iron, chromium, oxygen, and, where \(\text{BF}_3 \) was involved, fluorine. Thus, the corrosion products were probably complex mixtures of metal oxides and perhaps fluorides.

The use of drier argon (2 ppm moisture as opposed to 24 ppm) lowered the weight gain of the stainless steel specimens by about one-half. The effect of moisture was more dramatic when the gas was an argon-\(\text{BF}_3 \) mixture (Table 5).

Even though air had almost no effect on the stainless steel, the air-\(\text{BF}_3 \) mixture had the worst effect of any of the gases, much worse than just \(\text{BF}_3 \). The air in combination with argon also produced more corrosion products than either of the two gases by themselves. In combination with salt, \(\text{BF}_3 \) had the worst effect. These results underline the problems that can result in a system that allows air and/or moisture to come in contact with molten fluoride salts or with the \(\text{BF}_3 \) vapor.

Except in air at 600°C, Hastelloy N was much more resistant to corrosion than the type 304L stainless steel.

CONCLUSIONS

1. At 600°C, air completely destroyed Hastelloy N and type 304L stainless steel specimens that were immersed in either a fuel salt or the fluoroborate coolant mixture.

2. No significant weight changes were measured for Hastelloy N immersed in salt exposed to argon or \(\text{BF}_3 \) at 600°C, but type 304L stainless steel lost weight.

3. For the stainless steel immersed in salt, the \(\text{BF}_3 \) gas was more corrosive than the argon.

4. Stainless steel weight losses were larger in the fluoroborate mixture than in the fuel salt.

5. At 200°C, the various gases produced very small changes in the alloys.

6. At 300 and 600°C, only small changes were noted in the Hastelloy N specimens.

7. Small changes were noted in the stainless steel exposed to air at 300°C, but large amounts of corrosion products were produced by \(\text{BF}_3 \), argon-\(\text{BF}_3 \), air-\(\text{BF}_3 \), and argon-air.
8. At 600°C, the air-BF₃ mixture produced large quantities of chromium oxide and iron oxide on the stainless steel; also large amounts of corrosion products were produced by BF₃, argon-BF₃, and argon-air.

9. Drying the argon decreased the amount of corrosion.

10. Hastelloy N is more resistant to corrosion by the gases tested in this experiment than type 304L stainless steel.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge E. J. Lawrence, who operated the experiment and was responsible for the weight change measurements of all the corrosion specimens. I am indebted to H. E. McCoy, J. H. DeVan, and T. S. Lundy for constructive review of the manuscript.

Special thanks are extended to C. E. Zachary for metallographic work, R. M. Steele for the x-ray diffraction, and the Metals and Ceramics Reports Office for invaluable assistance.
BRYON JACKSON PUMP, P.O. Box 2017, Los Angeles, CA 90054
G. C. Clasby

CABOT CORPORATION, STELLITE DIVISION, 1020 Park Ave., Kokomo, IN 46901
T. K. Roche

CONTINENTAL OIL COMPANY, Ponca City, OK 74601
J. A. Acciarri

EBASCO SERVICES, INC., 2 Rector Street, New York, NY 10006
D. R. deBoisblanc
T. A. Flynn

THE INTERNATIONAL NICKEL COMPANY, Huntington, WV 25720
J. M. Martin

UNION CARBIDE CORPORATION, CARBON PRODUCTS DIVISION, 12900 Snow Road, Parma, OH 44130
R. M. Bushong

USAEC, DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY, Washington, DC 20545
David Elias
J. E. Fox
Norton Haberman
C. E. Johnson
T. C. Reuther
S. Rosen
Milton Shaw
J. M. Simmons

USAEC, DIVISION OF REGULATIONS, Washington, DC 20545
A. Giambusso

USAEC, RDT SITE REPRESENTATIVES, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37830
D. F. Cope
Kermit Laughon
C. L. Matthews

USAEC, OAK RIDGE OPERATIONS, P.O. Box E, Oak Ridge, TN 37830
Research and Technical Support Division

USAEC, TECHNICAL INFORMATION CENTER, P.O. Box 62, Oak Ridge, TN 37830 (2)